Rapid7 Vulnerability & Exploit Database

Alma Linux: CVE-2024-26837: Important: kernel security update (Multiple Advisories)

Free InsightVM Trial No Credit Card Necessary
2024 Attack Intel Report Latest research by Rapid7 Labs
Back to Search

Alma Linux: CVE-2024-26837: Important: kernel security update (Multiple Advisories)

Severity
4
CVSS
(AV:L/AC:M/Au:N/C:P/I:P/A:P)
Published
04/17/2024
Created
08/13/2024
Added
08/12/2024
Modified
08/12/2024

Description

In the Linux kernel, the following vulnerability has been resolved: net: bridge: switchdev: Skip MDB replays of deferred events on offload Before this change, generation of the list of MDB events to replay would race against the creation of new group memberships, either from the IGMP/MLD snooping logic or from user configuration. While new memberships are immediately visible to walkers of br->mdb_list, the notification of their existence to switchdev event subscribers is deferred until a later point in time. So if a replay list was generated during a time that overlapped with such a window, it would also contain a replay of the not-yet-delivered event. The driver would thus receive two copies of what the bridge internally considered to be one single event. On destruction of the bridge, only a single membership deletion event was therefore sent. As a consequence of this, drivers which reference count memberships (at least DSA), would be left with orphan groups in their hardware database when the bridge was destroyed. This is only an issue when replaying additions. While deletion events may still be pending on the deferred queue, they will already have been removed from br->mdb_list, so no duplicates can be generated in that scenario. To a user this meant that old group memberships, from a bridge in which a port was previously attached, could be reanimated (in hardware) when the port joined a new bridge, without the new bridge's knowledge. For example, on an mv88e6xxx system, create a snooping bridge and immediately add a port to it: root@infix-06-0b-00:~$ ip link add dev br0 up type bridge mcast_snooping 1 && \ > ip link set dev x3 up master br0 And then destroy the bridge: root@infix-06-0b-00:~$ ip link del dev br0 root@infix-06-0b-00:~$ mvls atu ADDRESS FID STATE Q F 0 1 2 3 4 5 6 7 8 9 a DEV:0 Marvell 88E6393X 33:33:00:00:00:6a 1 static - - 0 . . . . . . . . . . 33:33:ff:87:e4:3f 1 static - - 0 . . . . . . . . . . ff:ff:ff:ff:ff:ff 1 static - - 0 1 2 3 4 5 6 7 8 9 a root@infix-06-0b-00:~$ The two IPv6 groups remain in the hardware database because the port (x3) is notified of the host's membership twice: once via the original event and once via a replay. Since only a single delete notification is sent, the count remains at 1 when the bridge is destroyed. Then add the same port (or another port belonging to the same hardware domain) to a new bridge, this time with snooping disabled: root@infix-06-0b-00:~$ ip link add dev br1 up type bridge mcast_snooping 0 && \ > ip link set dev x3 up master br1 All multicast, including the two IPv6 groups from br0, should now be flooded, according to the policy of br1. But instead the old memberships are still active in the hardware database, causing the switch to only forward traffic to those groups towards the CPU (port 0). Eliminate the race in two steps: 1. Grab the write-side lock of the MDB while generating the replay list. This prevents new memberships from showing up while we are generating the replay list. But it leaves the scenario in which a deferred event was already generated, but not delivered, before we grabbed the lock. Therefore: 2. Make sure that no deferred version of a replay event is already enqueued to the switchdev deferred queue, before adding it to the replay list, when replaying additions.

Solution(s)

  • alma-upgrade-bpftool
  • alma-upgrade-kernel
  • alma-upgrade-kernel-abi-stablelists
  • alma-upgrade-kernel-core
  • alma-upgrade-kernel-cross-headers
  • alma-upgrade-kernel-debug
  • alma-upgrade-kernel-debug-core
  • alma-upgrade-kernel-debug-devel
  • alma-upgrade-kernel-debug-modules
  • alma-upgrade-kernel-debug-modules-extra
  • alma-upgrade-kernel-devel
  • alma-upgrade-kernel-doc
  • alma-upgrade-kernel-headers
  • alma-upgrade-kernel-modules
  • alma-upgrade-kernel-modules-extra
  • alma-upgrade-kernel-rt
  • alma-upgrade-kernel-rt-core
  • alma-upgrade-kernel-rt-debug
  • alma-upgrade-kernel-rt-debug-core
  • alma-upgrade-kernel-rt-debug-devel
  • alma-upgrade-kernel-rt-debug-kvm
  • alma-upgrade-kernel-rt-debug-modules
  • alma-upgrade-kernel-rt-debug-modules-extra
  • alma-upgrade-kernel-rt-devel
  • alma-upgrade-kernel-rt-kvm
  • alma-upgrade-kernel-rt-modules
  • alma-upgrade-kernel-rt-modules-extra
  • alma-upgrade-kernel-tools
  • alma-upgrade-kernel-tools-libs
  • alma-upgrade-kernel-tools-libs-devel
  • alma-upgrade-kernel-zfcpdump
  • alma-upgrade-kernel-zfcpdump-core
  • alma-upgrade-kernel-zfcpdump-devel
  • alma-upgrade-kernel-zfcpdump-modules
  • alma-upgrade-kernel-zfcpdump-modules-extra
  • alma-upgrade-perf
  • alma-upgrade-python3-perf

insightVM

Advanced vulnerability management analytics and reporting.
Key Features
  • Lightweight Endpoint Agent
  • Live Dashboards
  • Real Risk Prioritization
  • IT-Integrated Remediation Projects
  • Cloud, Virtual, and Container Assessment
  • Integrated Threat Feeds
  • Easy-to-Use RESTful API
  • Automation-Assisted Patching
  • Automated Containment
Free InsightVM Trial View All Features

With Rapid7 live dashboards, I have a clear view of all the assets on my network, which ones can be exploited, and what I need to do in order to reduce the risk in my environment in real-time. No other tool gives us that kind of value and insight.

– Scott Cheney, Manager of Information Security, Sierra View Medical Center

;