In the Linux kernel, the following vulnerability has been resolved: io_uring: lock overflowing for IOPOLL syzbot reports an issue with overflow filling for IOPOLL: WARNING: CPU: 0 PID: 28 at io_uring/io_uring.c:734 io_cqring_event_overflow+0x1c0/0x230 io_uring/io_uring.c:734 CPU: 0 PID: 28 Comm: kworker/u4:1 Not tainted 6.2.0-rc3-syzkaller-16369-g358a161a6a9e #0 Workqueue: events_unbound io_ring_exit_work Call trace: io_cqring_event_overflow+0x1c0/0x230 io_uring/io_uring.c:734 io_req_cqe_overflow+0x5c/0x70 io_uring/io_uring.c:773 io_fill_cqe_req io_uring/io_uring.h:168 [inline] io_do_iopoll+0x474/0x62c io_uring/rw.c:1065 io_iopoll_try_reap_events+0x6c/0x108 io_uring/io_uring.c:1513 io_uring_try_cancel_requests+0x13c/0x258 io_uring/io_uring.c:3056 io_ring_exit_work+0xec/0x390 io_uring/io_uring.c:2869 process_one_work+0x2d8/0x504 kernel/workqueue.c:2289 worker_thread+0x340/0x610 kernel/workqueue.c:2436 kthread+0x12c/0x158 kernel/kthread.c:376 ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:863 There is no real problem for normal IOPOLL as flush is also called with uring_lock taken, but it's getting more complicated for IOPOLL|SQPOLL, for which __io_cqring_overflow_flush() happens from the CQ waiting path.
With Rapid7 live dashboards, I have a clear view of all the assets on my network, which ones can be exploited, and what I need to do in order to reduce the risk in my environment in real-time. No other tool gives us that kind of value and insight.
– Scott Cheney, Manager of Information Security, Sierra View Medical Center