
Using LLM Embeddings with Similarity Search for Botnet TLS
Certificate Detection

ABSTRACT
Modern botnets leverage TLS encryption to mask C&C server com-
munications. TLS certificates used by botnets could exhibit subtle
characteristics that facilitate detection. In this paper we investi-
gate whether text features from TLS certificates can be represented
by open-source and 3rd party vendor LLM text embeddings in a
projected vector space, for the purpose of building a classifier to
detect botnet certificates. Our method extracts informative features,
generating vector representations for effective identification, creat-
ing a projected space that can be queried with test certificates via
similarity search. Using a balanced dataset consisting of the pub-
licly available SSLBL botnet certificates and TLS certificates used
by popular websites, our evaluations show that C-BERT, an open-
source model, emerges as the preferred choice within our proposed
system rather than a vendor solution. C-BERT achieves a competi-
tive F1 score of 0.994 on unseen test data, 97.9% accuracy on data
gathered several months after an initial projected embedding space
was created, and maintains performance in a simulated zero-day
evaluation against four C&C groups, with an average F1 score of
0.946. Further evaluation on a random sample of 150,000 real-world
certificates collected from a full internet scan between Jan 2024 to
May 2024 predicts 13 potential botnet certificates, among which
one was confirmed to be malicious by VirusTotal. Comparing with
the scenario where no such tool exists, we randomly selected 1,300
certificates from these 150,000 certificates and ran them through
VirusTotal, and none were confirmed to be malicious. This trans-
lates to 100 fold effort reduction in identifying botnet certificates
in the wild.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; • In-
formation systems→ Language models; Top-k retrieval in
databases; • Computing methodologies → Artificial intelli-
gence; Neural networks.

KEYWORDS
Botnet classification, LLMs, Vector Embeddings, Similarity Search,
Vector Databases, Nearest Neighbours, Clustering, kNN

ACM Reference Format:
. 2024. Using LLM Embeddings with Similarity Search for Botnet TLS Cer-
tificate Detection. In Proceedings of In proceedings of CCS (AISec’24). ACM,
New York, NY, USA, 11 pages. https://doi.org/pre.print

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec’24, Oct 18, 2024, Salt Lake City, UT
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/pre.print

1 INTRODUCTION
A botnet is a collection of internet-connected devices infected with
malware and covertly controlled by a malicious actor [15]. Com-
promised devices, known as bots, can be anything from traditional
computers to smartphones and even Internet of Things devices.
The bot communicates with a command and control (C&C) server,
allowing the attacker to remotely issue commands and orchestrate
large-scale attacks [7]. Botnet detection remains a critical area of
cybersecurity research, as evidenced by the plethora of studies
documented in various publications [15, 34]. Two main paradigms
dominate detection techniques: signature-based, offering minimal
false positives whilst struggling with novel threats, and anomaly-
based, leveraging artificial intelligence (AI) and machine learning
(ML) for broader detection however with a higher false positive rate.
This trade-off highlights the importance of both approaches, with
signature-based methods providing a safety net while anomaly-
based techniques identifying previously unseen botnet variants,
crucial in the fight against ever-evolving cyber threats.

Communication between bots and the C&C server frequently
leverages Transport Layer Security (TLS) protocol for encryption [15,
34], rendering communication content indecipherable by network
administrators using traditional traffic monitoring techniques. The
TLS protocol requires the server to present an x.509 certificate
to prove its identity, and we hypothesis botnet certificates may
exhibit distinct characteristics compared to legitimate certificates.
This motivates us to explore the potential of certificate analysis
for botnet detection, an under-researched area in prior literature.
With the sheer volume of TLS certificates, it is not feasible for
security analysts to manually verify each individually. Our work
aims to help solve this problem with an AI/ML based malicious
certificate detection system. While previous work [30] relied on
neural network training, in contrast this paper proposes a novel,
lightweight method, eliminating the need for training a model from
scratch by instead using pre-trained Large Language Model (LLM)
embeddings. This approach further leverages a vector database for
efficient similarity search during the prediction process. A test TLS
certificate, the subject name and issuer name are first extracted
then combined to generate a vector embedding which is queried
against the vector index. The 𝑘-nearest neighbors are retrieved
with a voting mechanism then being employed to classify the test
certificate as malicious or benign.

While LLMs are experiencing rapid adoption across various
industries due to the impressive capabilities [35], cybersecurity
presents particular challenges regarding production deployment
complexities and resource dependencies. This motivates another
aspect of our work to investigate the efficacy of both open-source
LLMs and commercial offerings from vendors like OpenAI or AWS.
Furthermore, the dearth of publicly available real-world datasets has
hindered AI/ML research somewhat pertaining to botnet certificate
detection. In contrast, we evaluate against a real-world evaluation
alongside a zero-day botnet detection scenario.

Our contributions are:

https://doi.org/pre.print
https://doi.org/pre.print

AISec’24, Oct 18, 2024, Salt Lake City, UT

• A novel approach for botnet certificate detection using LLM
vector embeddings coupled with efficient vector search tech-
niques. Our innovative methodology presents a significant
departure from traditional methods, with results demonstrat-
ing effective detection of botnet certificates.

• A rigorous evaluation assessing the potential of different
open-source and vendor LLM embedding models by compar-
ing their performance.

• Validation of the real-world applicability of our proposed
approach through an evaluation on TLS certificates taken
from the wild. The evaluation provides compelling evidence
on our method’s effectiveness in reducing human efforts for
identifying botnet C&C servers under realistic operational
constraints.

This paper is organized as follows: Section 2 discusses related
work, Section 3 explains the methodology and Section 4 outlines the
experimental setup. Detailed results are in Section 5 with Section 6
containing conclusions and future work.

2 RELATEDWORK
Torroledo et al. [30] used deep neural networks for classifying TLS
certificates used by malware. The authors created a web crawler
for certificate collection and feature engineering, and used this
data to train a neural network model to classify whether or not a
given certificate is used to facilitate malware activities. Our work
differs in that we leverage embeddings in pre-trained large language
models combined with 𝑘NN to build a classifier. We also performed
evaluation on TLS certificates in the wild, in addition to curated
data sets with known ground truths.

Theofanous et. all [29] created a dataset by actively probing
TLS servers and collect a large number of features from the TLS
handshake meta data, including certificates. The authors investi-
gated using machine learning on these features to classify a server
into benign and botnet C&C servers. Our work focuses on TLS
certificates and use LLM embeddings as latent representations to
facilitate machine learning based classification. The dataset cre-
ated from the authors’ work could benefit our work by providing
additional sources of botnet C&C TLS certificates.

Researchers have studied TLS certificates used by “Booter” web-
sites for selling DDoS services [22], and those used by phishing
websites [18]. In these studies the authors found that TLS certificates
used for these malicious activities present distinct characteristics.
This is consistent with our assumption on which this work is based
on.

Botnet detection has been a long standing problem [36]. BotH-
unter [17] leveraged the evidence trails left by botnets in network
traffic. Another approach [28] used deep neural networks and time-
based network data utilized LTSM and RNN neural networks. Our
work provides another source of indicators for detecting botnet
activities, that from the TLS certificates used by botnet C&C com-
munications.

3 METHODOLOGY
Raw TLS certificate string features are first preprocessed to gener-
ate a set of information-rich vector embeddings, one per certificate.
These vectors are projected to create a embedding space, stored

in a vector database, which is queried to predict whether or not
new certificates are malicious or not. Figure 1 presents the overall
pipeline for using our proposed system in operation. The first step
(Stage 1) involves populating a vector index of embeddings com-
puted from known malicious and benign TLS certificates (called
reference certificates in the figure). Once the index is populated,
a new test certificate that is not part of the reference certificates
can be queried against the embedding space already in the index to
be classified as malcious or benign. The same preprocessing steps
used to generate the existing embedding space is used on the test
certificate to generate the corresponding embedding, which is then
queryed against the embedding space in the index to find the 𝑘-
nearest neighbors. A majority voting scheme based on the labels
of the 𝑘-nearest certificates then classifies the new certificate as
either malicious or benign. If a majority of the 𝑘-nearest neighbors
are classified as malicious, the new test certificate is classified as
malicious as well, otherwise it is classified as bengin.

We take care to conduct evaluations not only to determine the
optimal setup for malicious certificate detection in the general case,
but in the most challenging scenarios of 1) handling brand new
certificates gathered later than those used to create the embedding
space, 2) a zero-day setting to simulate detection performance on
emerging C&C groups from organized clusters of threat actors
that use specific C&C infrastructure and 3) an evaluation against
150,000 certificates gathered in the wild. Further, not only are we
interested in the discriminative power of alternative embedding
representations, but this work makes considerations related to the
important real-world application of our approach in a production
environment, including 3rd party dependencies, open-source, infor-
mation security, inference time, and cost. With this in mindmultiple
LLM embedding models are evaluated with different embedding
strategies, and we leverage FAISS [19], an in-memory vector store,
to efficiently to store, search, and retrieve the vectors that make up
the embedding space.

3.1 TLS Certificate Preprocessing
Each TLS certificate contains a subject and an issuer, previously
shown to be useful for botnet detection [30]. A TLS certificate’s
subject is who it belongs to, such as a domain, and the issuer is
the trusted authority that signed it. A subject can take the form
www.agl.com.au, O=AGL Energy Limited, L=Docklands, ST=Victoria,
C=AU, and an issuer similarly constructed as DigiCert TLS RSA
SHA256 2020 CA1, O=DigiCert Inc, C=US. While the whole subject
and issuer text strings can be used in full to create vector embed-
dings, we wish to investigate whether or not separate embedddings
for individual attributes are of value. Per Table 1, our preprocessing
steps parse the subject and issuer fields for a given certificate to
yield the following:

• Name
• Country
• Oraganization
• Oraganization unit
• Location
• State
• Email

Using LLM Embeddings with Similarity Search for Botnet TLS Certificate Detection AISec’24, Oct 18, 2024, Salt Lake City, UT

Embedding
Generation

Reference
Certificates

Index

Embedding
Generation

Populating Reference Certificates Index

1. Extract Subject & Issuer

2. Preprocessing

3. Generate vector embeddings
 using various embedding
 strategies

Stage 1

Reference Certificates

Test
certificate

Voted as
Malicious

Stage 2
Querying for a test certificate

Figure 1: Approch Overview

Table 1: Example make-up of subject and issuer fields in a TLS certficate

Field Name Country Oraganization Organization Unit Location State Email

Subject www.agl.com.au AU AGL Energy Limited NA Docklands Victoria NA
Issuer DigiCert TLS RSA SHA256 2020 CA1 US Digicert Inc NA NA NA NA

Any missing fields within a certificate were imputed with the
string NA to ensure consistent data representation during subse-
quent embedding steps. Once the full text subject and issuer, plus
the individual attributes, are extracted as strings, the next step is to
embed these strings to create numerical vector representations.

3.2 TLS Certificate Embedding Strategies
Learning semantic relationships through vector embeddings has
transformed Natural Language Processing (NLP). Typically words
or documents are mapped into high-dimensional vector spaces
where data points located near each other represent semantically
related concepts. This is achieved by learning a metric that captures
these relationships, and the embeddings enable powerful mathe-
matical operations on the data, such as similarity search, facilitating
various NLP tasks.

Word2Vec [23], GloVe [25], and FastText [10] were seminal vec-
tor embedding methods that have been instrumental for years.
However, recent advancements in generative pre-trained LLMs
have led to the emergence of new embedding techniques. These
pre-trained models can accept entire strings as input and return
a fixed-length vector representation, capturing contextual infor-
mation beyond individual words. As shown in Figures 2, 3, 4 and
5, after first preprocessing each certificate, the text features are

then used to generate one or more feature embeddings, which are
then concatenated into a final embedding vector. These final em-
beddings represent the certificates in a high-dimensional space,
where similar certificates are in closer proximity and dissimilar
certificates further apart. This final embedding creation process
involves different embedding strategies to assess their impact on
botnet detection performance. We explain them in turn as follows,
and use𝑛 to denote the number of individual embeddings generated
from a single certificate in the pre-processing stage.

• Embedding Strategy 1: Subject string only - here only the
Subject string is used to generate the embedding so 𝑛 = 1.
The time taken to generate the embedding can be expressed
as

𝑡𝑐𝑒𝑟𝑡 = 𝑡𝑒𝑚𝑏𝑒𝑑 × 𝑛 = 𝑡𝑒𝑚𝑏𝑒𝑑

where 𝑡𝑒𝑚𝑏𝑒𝑑 is the individual embedding generation time.
The length of this final certificate embedding on disk is 𝑢 =

𝑙 × 𝑛 = 𝑙 , with 𝑙 being the length of an embedding output
from a given model per Table 2.

• Embedding Strategy 2: Subject string and Issuer string con-
catenated - we first concatenate the Subject and Issuer strings
to form a unified input string before embedding generation.

AISec’24, Oct 18, 2024, Salt Lake City, UT

Full Subject
String

LLM Embedding
Model

Final Embedding
Vector

Input Output

Figure 2: Embedding strategy 1

Full Subject
String

Full Issuer
String

LLM Embedding
Model

Final Embedding
Vector

Input

Input

Output
Concatenate

Figure 3: Embedding strategy 2

Full Subject
String

Input LLM Embedding
model

String Embedding
Vector

Output

Full Issuer
String

Input LLM Embedding
model

String Embedding
Vector

Output

Concatenate
Final Embedding

Vector

Figure 4: Embedding strategy 3

Subject Feature 1

Subject Feature 7

Issuer Feature 1

Issuer Feature 7

LLM Embedding
Model

LLM Embedding
Model

LLM Embedding
Model

LLM Embedding
Model

Subject Feature 1
Embedding Vector

Subject Feature 7
Embedding Vector

Issuer Feature 1
Embedding Vector

Issuer Feature 7
Embedding Vector

Input

Final Embedding
Vector

Concatenate

Input

Input

Input

Output

Output

Output

Output

.

.

.

.

.

.

Figure 5: Embedding strategy 4

Figure 6: The four vector embedding strategies used for TLS certificate features

We have 𝑛 = 1 and the time taken to generate the embed-
ding remains 𝑡𝑐𝑒𝑟𝑡 = 𝑡𝑒𝑚𝑏𝑒𝑑 . The resultant embedding vector
remains a length of 𝑢 = 𝑙 .

• Embedding Strategy 3: Subject string and Issuer string em-
bedded separately - embeddings are generated separately
using the Subject and Issuer strings. The resulting two em-
beddings are then concatenated to create a unified single
embedding. Here 𝑛 = 2 and the resulting embedding vector
has a dimensionality of𝑢 = 2𝑙 . The time taken for generating
this composite embedding is 𝑡𝑐𝑒𝑟𝑡 = 2𝑡𝑒𝑚𝑏𝑒𝑑 .

• Embedding Strategy 4: Individual features embedded sepa-
rately - following the feature extraction procedures outlined

in Section 3.1, we generate embeddings for each extracted
feature. These embeddings are then concatenated to create
a unified single embedding. The total number of features
being 𝑛 = 14, the resulting embedding vector has a length
of 𝑢 = 14𝑙 . As the embedding generation process is repeated
for each feature, the total time taken to generate the final
embedding vector is 𝑡𝑐𝑒𝑟𝑡 = 14𝑡𝑒𝑚𝑏𝑒𝑑 , assuming no parallel
processing.

In the rest of the paper, for brevity we refer to the Embedding
Strategy as 𝐸, with the integers 1 to 4 representing the four strate-
gies respectively.When running each of these embedding strategies,

Using LLM Embeddings with Similarity Search for Botnet TLS Certificate Detection AISec’24, Oct 18, 2024, Salt Lake City, UT

Table 2: Summary of vector embedding models used

Model Year 𝑙

BERT [13] 2018 768
C-BERT [11] 2020 768
Titan [27] 2023 1536
Titan 2 [27] 2024 1024
Cohere [31] 2023 1024
OpenAI [14] 2024 3072
VoyageAI [3] 2024 1024

the choice of LLM affects the size and content of each embedding
vector, discussed in the next subsection.

3.3 Generative LLM Embedding Model Selection
LLM embedding models convert discrete words or tokens, includ-
ing characters or phrases, into high-dimensional numerical vectors
of floating point numbers. These vectors, called embeddings, cap-
ture the semantic meaning and relationships between words in a
continuous space. For our study, we selected a diverse set of embed-
ding models as shown in Table 2, with a well-established baseline,
BERT [13]. This allows for a comprehensive evaluation of the impact
of different embedding techniques on our task. Different embedding
models are trained on different text corpora with varying length 𝑙 of
their generated output embedding vectors. More data for training
the model may improve performance and longer vectors are more
discriminative due their higher dimensionality [16]. A summary of
the embedding models used in this work can be found in Table 2.

• BERT [13]: BERT serves as our baseline model due to its wide-
spread adoption and open-source nature. This choice facili-
tates the reproducibility of our research and allows compari-
son with other embedding models.

• C-BERT [11]: We specifically incorporate C-BERT due to its
character-level processing. This approach is particularly ad-
vantageous for capturing semantic relationships within sin-
gle words, whichmay be effective for our task as subjects and
issuers are often short and potentially ambiguous entities.

• OpenAI text-embedding-3-large [14]: OpenAI’s text-emb
edding-3-large model is used extensively within the re-
search community.

• AWS titan-embed-text:v1:0 [27]: Amazon’s Titan em-
bedding models are widely used within the AWS ecosystem.
Titan v1.0 serves as the default embedding model.

• AWS titan-embed-text:v2:0 [27]: Amazon’s Titan 2, re-
leased in May 2024, with the intent of giving improved per-
formance compared to its predecessor.

• Cohere embed-english-v3.0 [31]: Cohere’s
embed-english-v3.0model is another regular choicewithin
the research community. Its inclusion allows for a broader
comparison across various embedding models.

• Voyage AI Voyage-large-2-instruct [3]: At the time of
conducting this work, voyage-large-2-instruct held the
top position on the MTEB leaderboard [24]. This perfor-
mance record motivated its inclusion within our model se-
lection.

+

*

+
+

+
+
+

+

+
+

+

+
+

+
+

+
+

+

+
+

+

+
+

*
*
*

*
*

*
*

**
*

*

*

*
*
*

*

*

*
*

*
*C

Benign

Malicious

Y

X

Figure 7: Certificate classified as malicious due to majority malicious
neighbors.

Generated vectors are stored in an in-memory FAISS [19] vector
database. Vector databases are designed for highly efficient retrieval
and comparison of vectors. Using a vector database to store and
query certificates based on their embedded representations is ad-
vantageous to using other methods such as iterating over a lengthy
CSV files. To create the FAISS index, the generated certificate em-
beddings are fed into the FAISS library, with FAISS data structures
facilitating efficient nearest neighbor search within the embedding
space.

3.4 Classifying an Unseen TLS Certificate using
𝑘NN and FAISS

Our approach leverages vector similarity search for classifying a
previously unseen TLS certificate as malicious or benign.We consid-
ered three similarity metrics: cosine similarity, Euclidean distance,
and dot product. Let 𝐴 = (𝐴1, . . . , 𝐴𝑛) and 𝐵 = (𝐵1, . . . , 𝐵𝑛) be two
vectors between which the metrics are being calculated.

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐴 · 𝐵
|𝐴| |𝐵 | (1)

Cosine similarity excels at capturing directional alignment, mak-
ing it suitable for tasks where relative orientationmatters more than
absolute magnitude. However, it can be insensitive to magnitude
differences.

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

√√√
𝑁∑︁
𝑖=1

(𝐴𝑖 − 𝐵𝑖)2 (2)

Euclidean distance provides a direct measure of distance in the
vector space, but can be swayed by varying vector lengths.

𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐴 · 𝐵 (3)
Dot product, while computationally efficient, inherits limitations

from both cosine similarity and Euclidean distance - sensitive to
both direction and magnitude without normalization.

Later in our experiments we conduct an ablation study between
these three metrics in order to choose the one that appears most
performant for our task.

AISec’24, Oct 18, 2024, Salt Lake City, UT

Our choice of FAISS [19] for vector indexing and retrieval stems
from its suite of optimized indexing algorithms. FAISS implements a
variety of indexing techniques that significantly accelerates search
times compared to brute-force approaches. This efficiency is at-
tractive for our work dealing with datasets at several orders of
magnitude in size. FAISS also demonstrates excellent scalability,
allowing for efficient operations on collections that grow in size
over time. This characteristic ensures our solution remains perfor-
mant as our dataset expands, and likely would be of benefit in a
production setting. Given a test certificate, its embedding is gener-
ated using the same embedding model employed for the reference
certificates. This test certificate embedding is then used to query
the pre-built FAISS index.

FAISS retrieves the 𝑘 closest neighbors, that is, the 𝑘 certificate
embeddings most similar to the test certificate embedding from
the index. The value of 𝑘 represents a parameter that controls how
many nearest neighbors are selected and returned. A larger 𝑘 value
encompasses a broader neighborhood for comparison, potentially
improving robustness, but may also increase computational cost.
Finally, a classification decision is made based on the majority vote
from the retrieved nearest neighbors.

Figure 7 illustrates a test certificate 𝐶 being queried against
known malicious and benign certificates projected in a 2D embed-
ding space, with the bounding box representing the voting process.
In practice though, per Table 2, each embedding is several order of
magnitudes larger than 2 (or 3 if one opts to use 3D rendering), so
visualisation is not possible. But the underlying vector similarity
principles are the same. If more than half, i.e., 𝑘/2, of the 𝑘 near-
est neighbors belong to the malicious class, the test certificate is
classified as malicious. Otherwise it is classified as benign. Formally:

Malicious(𝐶) ⇔ |N𝐶
𝑘

∩M| >
|N𝐶

𝑘
|

2
(4)

where Malicious(C) represents a function that outputs True if
the test certificate𝐶 is deemed malicious and False otherwise.N𝐶

𝑘
represents the set of the 𝑘-nearest neighbors of certificate 𝐶 in the
vector space, with M representing all the malicious certificates in
the dataset and the intersection of both is the number of malicious
certificates returned.

4 EXPERIMENTAL SETUP
We conduct our experiments in multiple progressive stages, with
the early experiments being ablation studies. To begin with each of
the embedding strategies are assessed to ascertain the most perfor-
mant, followed by selecting the ideal distance metric. With these
two aspects of the configuration fixed, we then vary the embed-
ding model itself, per the previous selected list in Section 3.3. In
this way we can see the performance of the open source compared
to closed source embedding models using the same selected opti-
mal embedding strategy and distance metric. After this we chose
the best performing open source model, and the best performing
closed source model to evaluate against each other on held-out test
data. The impact of varying 𝑘 in the voting system is investigated
plus importantly in the final stages we conduct three important
experiments. The first ascertains the performance of the system
with new certificate data gathered after that used to conduct the

earlier ablation studies. The second subjects the system to a chal-
lenging zero-day scenario of detecting TLS certs from emerging
C&C groups [4] by removing them from the dataset when creat-
ing the initial embedding space and then only using those same
removed C&C certs for testing. Thirdly we evaluate our approach
on TLS certificates crawled from the internet to examine its utility
in real-world operations.

4.1 Datasets
A collection of malicious botnet certificates was obtained from
the SSL Blacklist (SSLBL) [2], a publicly available benchmark fre-
quently used in previous published works [21, 29, 30]. SSLBL is
a project designed to identify and blacklist TLS certificates asso-
ciated with botnet command and control (C&C) servers, thereby
enabling research into the detection of malicious connections. We
curate two datasets from SSLBL at different points in time to give
more confidence in our evaluations. The first dataset contains 2,516
certificates gathered between 2014-05-04 and 2024-01-11, and the
second dataset contains a further 149 certificates gathered between
2024-01-11 and 2024-06-03. Both datasets also include the C&C
group attributed to each certificate. We balance the first dataset by
adding 3,000 benign certificates randomly selected from the Alexa
Top 1Million list [6], a publicly available ranking of the most visited
websites. We assume these websites are not malicious. Similarly we
balance the second dataset with 150 randomly selected certificates
from Alexa Top 1 Million list. There is no overlap in the certifcates
between Dataset One and Dataset Two.

Dataset One is used in our ablation studies to select the optimal
configuration for embedding strategy, distance metric, and embed-
ding model. We then perform an evaluation in Section 5.5 holding
this optimal configuration constant and testing it using Dataset
Two as held-out and unseen test data, where the botnet certificates
were collected later than those in Dataset One. The botnet certifi-
cates’ statistics in the two datasets are summarised in Table 3, and 4.
To be concise only the 10 largest attributed C&C groups are listed.

Table 3: Top 10 C&C group certs in Dataset One (malicious certs
collected between 2014-05-04 and 2024-01-11 from SSLBL)

Attribution # Count
AsyncRAT 495
Dridex 358
Gozi 174
Quakbot 145
Malware 142
BitRAT 141
TorrentLocker 135
KINS 120
Gootkit 116
QuasarRAT 98

4.2 Data Partitioning and Cross-Validation
The first dataset gathered between 2014-05-04 and 2024-01-11 is
divided into training, validation, and testing sets. Note in broader
AI/ML model sense, the training step is synonymous with us creat-
ing the embedding space against which to evaluate other certificates,

Using LLM Embeddings with Similarity Search for Botnet TLS Certificate Detection AISec’24, Oct 18, 2024, Salt Lake City, UT

Table 4: Top 10 C&C group certs in Dataset Two (malicious certs
collected between 2024-01-11 and 2024-06-03 from SSLBL)

Attribution # Count
AsyncRAT 58
QuasarRAT 42
PureLogStealer 24
OrcusRAT 7
DCRat 4
Latrodectus 4
VenomRAT 3
AgentTesla 2
Rhadamanthys 2
RedLineStealer 1
Malware 1
njrat 1

rather than, say, training a neural network model itself; for brevity
we still refer to the portion of data used to create the embedding
space as the training data. Firstly a stratified 10% holdout was cre-
ated for the testing set, ensuring the test data distribution reflects
the overall dataset. The test dataset remains untouched for subse-
quent performance comparisons of various models as detailed in
Section 5.4. The remaining 90% of the data is used in the ablation
studies where, to mitigate overfitting and give more confidence
in generalization potential of our approach, stratified 5-fold cross-
validation[12] is performed. Each fold comprises 80% of the dataset
for training and 10% for validation, and the reported results in the
ablation experiments in Section 5.1, 5.2 and 5.3 are the average
across the five validation splits. To further evaluate the system’s
ability to predict future malicious certificates, Dataset 2 with botnet
certificates gathered between Jan 12th 2024 and June 3rd 2024 is
used entirely as test data.

4.3 Evaluation Metrics
We frame TLS certificate detection as a supervised binary classi-
fication problem. Each certificate is labelled as either malicious,
which is the positive class, or benign, which is the negative class.
A correct identification of a malicious certificate results in a True
Positive (TP), while a correct identification of a benign certificate
resulted in a True Negative (TN). A False Positive (FP) occurs when
a benign certificate is mistakenly predicted as malicious, and a
False Negative occurs when a malicious certificate is missed and
incorrectly predicted as benign.

Hence the focus should be on minimizing the false positive rate
(FPR) while concurrentlymonitoring themiss rate (MR), also known
as false negative rate. Achieving a complete absence of FPs is im-
practical in real-world applications [5]. To evaluate performance,
the metrics accuracy, precision, recall, F1-score, FPR, and MR are
formally defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 =
2 × precision × recall
precision + recall

(8)

false positive rate =
FP

FP + TN
(9)

miss rate =
FN

TP + FN
= 1 − recall (10)

Since miss rate can be derived from recall we do not separately
report it in the experiment results.

5 RESULTS
5.1 Embedding Strategy Ablation Study
Our first experiment aims to identify the most effective embedding
strategy from the four options explained previously in Section 3.
We hold the embedding model constant as OpenAI, 𝑘 = 5 and the
distance metric as cosine. Then we vary each embedding strategy
𝐸 from 1 to 4, creating the vector embedding space from the training
split of the first dataset, and evaluating with the validation split.
This allows us to monitor any performance changes that occur
as a direct result of changing the embedding strategy. Results in
Table 5 show employing only the subject as an encoded feature,
where 𝐸 = 1, yields significantly lower performance compared to
other strategies. Consequently, this approach can be excluded from
further consideration. Considering the F1 score, 𝐸 = 3 emerges
as the clear winner, achieving an accuracy of 0.994, precision of
0.989, recall of 0.998, and F1 score of 0.994. It could be said this is
expected, as embedding the subject and issuer strings separately
preserves the signal in both. For 𝐸 = 4, where every attribute of
the subject and issuer are first embedded and then concatenated,
performance is very good, however when compared to 𝐸 = 3, 𝐸 = 4
uses all possible 𝑛 = 14 features, and hence creates fourteen feature
vectors, seven from the subject and seven from the issuer that are
then concatenated. Per previous in Section 3.2, this requires 7x the
generation time and 7x disk space of 14𝑡𝑒𝑚𝑏𝑒𝑑 and 14𝑙 respectively,
compared to the concatenation of only two feature vectors with
2𝑡𝑒𝑚𝑏𝑒𝑑 and 2𝑙 for 𝐸 = 3. This further confirms 𝐸 = 3 as our
preferred strategy, where the full subject and issuer strings are
embedded separately and then concatenated. Thus 𝐸 = 3 is fixed
for the remainder of the experiments.

Table 5: Performance across the four embedding strategies

𝐸 Acc Prec Recall F1 FP %
1 0.852 0.817 0.869 0.842 16.267
2 0.965 0.986 0.936 0.960 1.133
3 0.994 0.989 0.998 0.994 0.933
4 0.989 0.984 0.992 0.988 1.333

5.2 Distance Metric Ablation Study
Building upon the previous experiment where 𝐸 = 3 emerged as
the best choice, we next focus on identifying the optimal similarity
metric for the classification task. Per previous Section 3, cosine,
dot product and Euclidean are under scrutiny. We hold the em-
bedding model constant as OpenAI, 𝑘 = 5 and 𝐸 = 3 whilst varying
the distance metric. We also report the inference time 𝑡 , measured
in milliseconds, to predict a single certificate Results in Table 6

AISec’24, Oct 18, 2024, Salt Lake City, UT

show the cosine metric achieves the highest F1 score of 0.994
with a marginally longer inference time than dot product and
Euclidean. While a trade-off exists between inference speed and
detection performance, the significant improvement in F1 score
justifies fixing the use of cosine in the remaining experiments.

Table 6: Performance across the three distance metrics

Distance Metric 𝑡 (ms) Acc Prec Recall F1 FP %
cosine 0.177 0.994 0.989 0.998 0.994 0.933
dot product 0.124 0.960 0.952 0.961 0.956 4.067
Euclidean 0.114 0.977 0.988 0.961 0.974 1.000

5.3 Embedding Model Ablation Study
In the previous two experiments the embedding model was held
constant as OpenAI. Having selected which 𝐸 and distance metric
to use, here we investigate how performance varies across our
chosen set of embedding models which are a mix of open and closed
source. We hypothesize that for some tasks open source models
may generate embedding vectors which could be as discriminative
as those from 3rd party closed-source offerings, without many of
the dependencies, costs, and security considerations that vendor-
based solutions introduce. Hence we are curious to see if this is the
case in our work in detecting botnet certificates. Holding 𝐸 = 3,
the distance metric as cosine, and 𝑘 = 5, we vary the choice
of embedding model across OpenAI[14], Titan[27], Titan2[27],
Cohere[31], C-BERT[11], BERT[13] and VoyageAI[3].

Results in Table 7 (OSS column indicates open source or not)
show C-BERT emerges as a strong open-source contender, achiev-
ing a competitive F1 score of 0.981 that is comparable to OpenAI
which had an F1 score of 0.994. However notably, C-BERT’s infer-
ence time 𝑡 in predicting a certificate is 0.064ms, which is almost
64% faster than OpenAI’s 0.177 ms. It can also be said that, unlike
OpenAI, Titan, Titan 2, Cohere, and Voyage, C-BERT is open-
source, reducing external dependencies, cost, and potential security
risks associated with third-party API egress. Having identified this
suitable open-source alternative, C-BERT, with comparable perfor-
mance to OpenAI, we proceed to the evaluation phase. The next
step involves a head-to-head comparison of C-BERT and OpenAI
using the held-out test data.

5.4 Held-out Unseen Test Data Evaluation
As a reminder, per Section 4.2, at the outset 10% percent of the first
dataset was reserved for this unseen test data evaluation. Taking
both the OpenAI and C-BERT models, with 𝐸 = 3, distance metric
cosine and 𝑘 = 5, we test both models with this held out 10%.
Results in Table 8 demonstrate C-BERT exhibits strong competitive
performance, slightly surpassing OpenAI with an F1 score of 0.994
compared to 0.990. C-BERT additionally achieves a FP rate of 0.397%
which is less than half that of OpenAI’s and amiss rate of 0.667% that
is lower than OpenAI’s 1%. Further, it can be seen C-BERT achieves
this performance level with a significantly faster inference time 𝑡 of
0.021 ms compared to OpenAI’s 0.088 ms. Two primary factors can
contribute to the observed running time difference. Firstly, C-BERT
operates entirely on local hardware, while the OpenAI embedding

Table 7: Performance across the seven embedding models

Model 𝑡 (ms) Acc Prec Recall F1 FP % OSS
OpenAI 0.177 0.994 0.989 0.998 0.994 0.933 no
Titan 0.078 0.990 0.986 0.993 0.989 1.200 no

Cohere 0.037 0.987 0.985 0.987 0. 986 1.267 no

Titan 2 0.046 0.987 0.984 0.987 0.986 1.333 no

Voyage 0.068 0.960 0.985 0.926 0.954 1.200 no

BERT 0.029 0.958 0.968 0.939 0.953 2.600 yes

C-BERT 0.064 0.983 0.992 0.970 0.981 0.667 yes

model relies on an API for access, introducing potential network
latency. Secondly, the final vector length of the C-BERT embedding
output, 1,536, is smaller than that of the OpenAImodel, 6,144, giving
C-BERT a more favourable 𝑡 . It is also likely that C-BERT’s design
for character-level operations contributes to its competitiveness in
our use case that involves relatively short strings.

Table 8: Performance on held-out test data

Model 𝑡 (ms) Acc Prec Recall F1 FP %
OpenAI 0.088 0.991 0.988 0.992 0.990 1.000
C-BERT 0.021 0.995 0.992 0.996 0.994 0.667

5.5 Simulated Future TLS Certificate Detection
Evaluation

The previous experiments have demonstrated the classification
capability of our approach with strong performance in Section 5.4
using the held-out 10% test split of the first dataset. Recall this first
dataset included malicious certificates identified on SSLBL [2] up to
and including January 11th, 2024. A sterner test is to evaluate model
performance on what we describe as unseen data that is collected
later in time, accounted for in ourmethodology by curating a second
dataset of certificates newly posted on SSLBL between January 12th,
2024 and June 3rd, 2024, comprising 149 certificates. In theory, if we
had deployed our system in January 2024 with a vector embedding
space using data up until that point in time, the objective now is to
measure the simulated production performance between January
2024 and June 2024 on these 149 malicious certificates. With 𝐸 = 3,
𝑘 = 5 and distance metric cosine held constant, both C-BERT and
OpenAIwere again evaluated with this new data. The C-BERTmodel
achieved an F1 score of 0.979, compared to OpenAI’s 0.960. This
further shows the potential advantage of the open-source C-BERT
model in a production setting, compared to OpenAI vendor solution.

Table 9: Performance on future TLS certificates

Model 𝑡 (ms) Acc Prec Recall F1 FP %
OpenAI 0.032 0.959 0.966 0.953 0.960 3.401
C-BERT 0.023 0.979 0.973 0.986 0.979 2.649

Using LLM Embeddings with Similarity Search for Botnet TLS Certificate Detection AISec’24, Oct 18, 2024, Salt Lake City, UT

Table 10: Simulated zero-day C&C group evaluation

C&C Family # Certs 𝑡 (ms) Acc Prec Recall F1 FP %
Vawtrak 13 0.034 0.900 0.867 0.929 0.897 12.500
Corebot 10 0.042 1.000 1.000 1.000 1.000 0.000
VenomRAT 9 0.021 0.950 0.900 1.000 0.947 9.091
VMZeuS 9 0.033 0.900 0.900 0.900 0.900 10.000
Average 10.25 0.032 0.937 0.917 0.957 0.936 7.898

5.6 Simulated Zero-day C&C Group Evaluation
With C&C groups emerging over time, a botnet certificate detec-
tion system should ideally still be able to identify malicious certs
belonging to emerging, brand new C&C groups, akin to zero-day
detection in a malware scenario. The SSLBL public benchmark
dataset used in this work is curated in such a manner that each
certificate comes with the responsible attributed C&C group. In
this way, it becomes possible to remove a given C&C group from
the setup of the vector embedding space, and then test using that
same removed C&C group. To evaluate the performance of C-BERT
model embeddings in this manner, we hold 𝐸 = 3, 𝑘 = 5 with the
cosine distance metric per previous, while conducting a targeted
experiment holding out four C&C groups for testing - Vawtrak
MITM [20], Corebot C&C [26], VenomRAT C&C [33], and VMZeuS
C&C [9]. These C&C groups are entirely withheld from the setup of
the vector embedding space, which utilizes all the other remaining
certificates. This results in four new, balanced zero-day test datasets
containing each of the new C&C group certificates along with the
same number of benign certificates. In total the four testing sets
contain 41 botnet certificates and 41 benign certificates.

Results in Table 10 show excellent detection performance with
an average F1 score of 0.936 across the four withheld families, a
promising result given the challenging nature of the experiment to
try to correctly identify certificates from C&C groups that are not
present in the original vector embedding space. This suggests our
approach using C-BERT may effectively generalize to unseen C&C
families in the wild as they emerge.

5.7 Comparison between 𝑘 = 5 and 𝑘 = 1
The voting mechanism in our experiments uses 𝑘 = 5, with the cer-
tificate prediction of malicious or benign depending on the majority
label of the five nearest neighbours. For this experiment, we deter-
mine any change in performance for a more difficult setup where
the similarity search and retrieval can only operate with 𝑘 = 1, in
that the prediction will match the label of the closest certificate in
the existing embedding space compared to the projected location of
a new certificate. To do so, we evaluate the performance of C-BERT
and OpenAI with 𝑘 = 1, again forcing the similarity search to select
the single closest embedding in the high dimensional embedding
space. Results in Table 11 show C-BERT achieves competitive per-
formance with an F1 score of 0.996, even when 𝑘 = 1, compared to
OpenAI’s 0.994.

5.8 In the Wild - Real World Data Evaluation
Curated datasets used for evaluating machine learning approaches
for cyber security are inevitably biased. This is due to the fact that
ground truths are hard to obtain for data related to security tasks.

Table 11: Comparison of 𝑘 = 5 and 𝑘 = 1

Model 𝑘 𝑡 (ms) Acc Prec Recall F1 FP %
C-BERT 1 0.022 0.996 0.996 0.996 0.996 0.333
C-BERT 5 0.021 0.995 0.992 0.996 0.994 0.667
OpenAI 1 0.093 0.995 0.992 0.996 0.994 0.667
OpenAI 5 0.088 0.991 0.988 0.992 0.990 1.00

To create datasets with ground truths, one often has to compromise
on data distribution being representative of real world. Manually
examining a TLS certificate and the IP address where it was re-
trieved to determine its maliciousness is doable for a few cases,
but is infeasible for creating a dataset large enough for machine
learning research. Thus using sites’ popularity as a proxy for being
benign, and using published blacklisted certificates as a proxy for
being malicious, is a reasonable compromise in creating a dataset.
Our decision to use a mix of the SSLBL public benchmark certs
and those from the Alexa Top 1 Million list is based on this con-
sideration. However, one shall bear in mind that this mix does not
represent the distribution of malicious and benign certificates in the
wild. This is a dilemma researchers applying AI/ML to cybersecurity
always have to deal with.

Instead of accepting this limitation as unavoidable, we adopt
a different evaluation strategy to examine our approach’s utility
in a real world environment. We observe the key challenge in
evaluating an AI/ML-based system on real-world security data is
that this real-world data does not come with ground truth, and it
is too expensive to curate labels manually. In binary classification
such as ours, without ground truths for the positive and negative
class, our desired metrics of accuracy, precision, recall, F1, false
positive rate and miss rate cannot be calculated. The question is -
are these the only metrics that can be used to examine an AI/ML
system’s utility in real world operations? Our answer is no.

We examine the utility of a security tool through the lens of effort
saving. We ask the question - given the ultimate goal of a security
task, how much effort is reduced by using the tool, compared with
not using it? In this evaluation, we use the following as the goal of
our security task:

Find at least one malicious TLS certificate in the wild.

We randomly selected a sample of 150,000 certificates from a
comprehensive internet scan conducted between January and May
20241. We then applied our classifier on these 150,000 certificates,
which reported 13 of them as botnet certificates. While it is infea-
sible to check the ground truth of all the 150,000 certificates, it is
totally feasible to check the ground truth of 13. Using VirusTotal
(VT) [32], a public service for checking the maliciousness of files,
URLs, or IPs, we checked the 13 IP addresses where the 13 botnet
certificates were obtained. One of them was confirmed as mali-
cious. This means that by using our classifier, we did indeed find
one malicious TLS certificate from 150,000, by examining only 13.

The precision of our tool on the 150,000 certificates is 1/13 =

7.7%, significanly lower than the upper 90 percentage points from
the earlier experiments. There are a number of reasons for this.

1The scan was performed by a well known scanning tool from a well known company
which we cannot name due to anonymity requirement.

AISec’24, Oct 18, 2024, Salt Lake City, UT

The most important one is that the curated dataset is balanced,
with equal number of benign and malicious certificates. In the real
world botnet certificates likely constitute a minuscule portion of
the TLS certificates in the wild. Due to the base-rate fallacy [8],
even if a detector has extremely high detection accuracy, when
the prevelance of the target event is low, the precision will be
substantially reduced. The other reason is that real-world data does
not have the composition bias explained above. The bias could result
in artifacts that make the classification task easier. This further
demonstrates the importance of evalauting an ML-based security
tool on real-world data, in addition to curated datasets.

Now, if VT can provide the ground truth, why not run all the
150,000 IP addresses through it and thus label all the TLS certificates
in this real-world dataset? In fact, the ground truths from VT are not
free. Each is the result of running a sample through a number of AV
products, based on the vendors’ threat intelligence that ultimately
involves substantial human labor. For this reason, VirusTotal is not a
free service. One can only query up to 500 samples each day without
cost; beyond that an expensive subscription is required. Scanning
all 150,000 would be cost prohibitive, either in monetary term or
time. Scanning a sample through VT can thus be further seen as
a proxy for human toll needed to determine if a TLS certificate is
malicious.

Now we examine the cost for achieving the above stated goal
without using our tool. The only approach will then be to randomly
pick some certificates and manually determine if they are malicious.
This will be a labor intensive process. We would like to see given a
specific budget of human efforts, whether this approach can identify
a single malicious certificate in the wild, like we did using our
classifier. We decided to give this process 100 times human efforts
as in the previous case. Using VirusTotal as a proxy for such human
efforts, we allowed querying VT 1,300 times (vs. 13 times when our
classifier was used). We thus randomly selected 1,300 certificates
from the 150,000, and ran them through VT. Out of the 1,300, none
were confirmed as malicious by VT.

The contrast is clear: using our classifier, we only needed to
query VT 13 times to identify one confirmed malicious certificate.
Not using our classifier, after querying VT 1,300 times no confirmed
malicious certificate had been found. Thus, for the objective of iden-
tifying at least one malicious TLS certificate in the wild, our classifier
provided at least a 100x human effort reduction for these 150,000 TLS
certificates crawled from the internet.

This analysis illustrates that standard metrics such as precision
must be interpreted in the context of an operational environment to
explain the benefit of a security tool, in this case the human effort
reduction. A low precision score does not necessarily mean that a
tool is not useful.

5.9 Discussion: the Build vs. Buy Decision
The possible selection of LLMs to solve a cybersecurity use case
often includes the “build versus buy” decision, where the costs and
benefits are weighed up for developing an LLM-based approach
in-house, perhaps leveraging open-source foundation models, or
choosing a third party vendor-owned solution, for example ac-
cessed via serverless API. Significant factors in the “buy” decision
concern governance and information security risk, engineering

dependencies plus naturally costs. Data privacy, egress beyond
trusted boundaries, coding against 3rd party APIs vulnerable to
change, and potential performance impacts from even minor 3rd
party model updates all need to be considered when choosing what
path to take. For botnet certificate detection, and perhaps simi-
lar use cases, this study reinforces the potential of open-source
solutions like C-BERT, where its competitive performance across
multiple experiments, coupled with inherent security and cost ad-
vantages make it a compelling alternative to commercial offerings.
C-BERT and other appropriately licensed open-source models are
free to use in production environments and can be self-hosted with
internally documented and managed APIs, requiring no egress be-
yond a trusted boundary. Further, there should be no unexpected
changes to the actual model binary due to the checks and balances
associated with engineering hygiene in the enterprise. By elimi-
nating reliance on third-party APIs and self-hosting open-source
solutions for generating vector embeddings, the attack surface re-
duces to help mitigate the risk of LLM vulnerabilities such as model
poisoning [1]. Our findings suggest that for botnet certificate detec-
tion, and possibly other tasks, if in the research phase open-source
models exhibit competitive performance then serious consideration
should be given to a “build” approach leveraging those models, such
as C-BERT and others.

6 CONCLUSION AND FUTUREWORK
This paper investigates the application of LLM text embeddings
and their potential use with vector databases for botnet certificate
detection. We perform a comparative analysis of various open-
source and 3rd party embeddingmodels to identify themost suitable
solution for classifying malicious certificates. These evaluations
show that C-BERT, a publicly available character-based embedding
model, emerges as the preferred choice within our proposed system.
C-BERT achieves a competitive F1 score of 0.994 on balanced un-
seen test data, demonstrating strong performance that outperforms
OpenAI. C-BERT provides F1 score of 0.979 on balanced dataset com-
prising of botnet certificates gathered over several months after
data used to create the initial projected embedding space, and main-
tains performance in a simulated zero-day evaluation of four C&C
groups, with an average F1 score of 0.936. Furthermore, C-BERT has
a rapid inference time, making it well-suited for real-time applica-
tions. Evaluation of our detection system on 150,000 TLS certificates
crawled from the wild shows significant human effort reduction
in identifying malicious certificates. The open-source nature of
C-BERT eliminates reliance on external vendors and potential secu-
rity vulnerabilities associated with proprietary solutions.

For future work, we aim to extend our research by incorporating
a broader variety of malicious certificate databases. Additionally,
we plan to explore the potential benefits of incorporating features
beyond subject and issuer information into the embedding strategy.
Lastly, we propose to further extend this research by generating
custom embedding models through contrastive learning and fine-
tuning techniques.

REFERENCES
[1] OWASP Top 10. 2024. ML10:2023 Model Poisoning. https://owasp.org/www-

project-machine-learning-security-top-10/docs/ML10_2023-Model_Poisoning.
Accessed: 2024-07-04.

https://owasp.org/www-project-machine-learning-security-top-10/docs/ML10_2023-Model_Poisoning
https://owasp.org/www-project-machine-learning-security-top-10/docs/ML10_2023-Model_Poisoning

Using LLM Embeddings with Similarity Search for Botnet TLS Certificate Detection AISec’24, Oct 18, 2024, Salt Lake City, UT

[2] Abuse.ch. 2024. SSLBL | Malicious SSL Certificates. https://sslbl.abuse.ch/ssl-
certificates/. Accessed: 2024-06-09.

[3] Voyage AI. 2024. voyage-large-2-instruct: Instruction-tuned and rank 1
on MTEB. https://blog.voyageai.com/2024/05/05/voyage-large-2-instruct-
instruction-tuned-and-rank-1-on-mteb. Accessed: 2024-07-02.

[4] Turki Al lelah, George Theodorakopoulos, Philipp Reinecke, Amir Javed, and
Eirini Anthi. 2023. Abuse of cloud-based and public legitimate services as
command-and-control (C&C) infrastructure: a systematic literature review. Jour-
nal of Cybersecurity and Privacy 3, 3 (2023), 558–590.

[5] Bushra A. Alahmadi, Louise Axon, and Ivan Martinovic. 2022. 99% False Pos-
itives: A Qualitative Study of SOC Analysts’ Perspectives on Security Alarms.
In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 2783–2800. https://www.usenix.org/conference/usenixsecurity22/
presentation/alahmadi

[6] Amazon. 2024. Alexa Top 1 million. http://s3-us-west-1.amazonaws.com/
umbrella-static/top-1m.csv.zip. Accessed: 2024-07-04.

[7] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th USENIX security
symposium (USENIX Security 17). 1093–1110.

[8] Stefan Axelsson. 1999. The base-rate fallacy and its implications for the difficulty
of intrusion detection. In Proceedings of the 6th ACM conference on Computer and
Communications Security (CCS’99). 1–7.

[9] Paul Black, Iqbal Gondal, and Robert Layton. 2018. A survey of similarities in
banking malware behaviours. Computers & Security 77 (2018), 756–772.

[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the association
for computational linguistics 5 (2017), 135–146.

[11] Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, Hiroshi Noji, Pierre
Zweigenbaum, and Junichi Tsujii. 2020. CharacterBERT: Reconciling ELMo
and BERT for Word-Level Open-Vocabulary Representations From Characters.
arXiv:2010.10392 [cs.CL] https://arxiv.org/abs/2010.10392

[12] Michael W Browne. 2000. Cross-validation methods. Journal of mathematical
psychology 44, 1 (2000), 108–132.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[14] OpenAI et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https:
//arxiv.org/abs/2303.08774

[15] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass. 2009. A Survey of
Botnet and Botnet Detection. In 2009 Third International Conference on Emerging
Security Information, Systems and Technologies. 268–273. https://doi.org/10.1109/
SECURWARE.2009.48

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[17] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2007. BotHunter: Detecting malware infection through IDS-driven dialog
correlation. In USENIX Security Symposium, Vol. 7. 1–16.

[18] Kaspar Hageman, Egon Kidmose, René Rydhof Hansen, and Jens Myrup Pedersen.
2021. Can a TLS certificate be phishy?. In Proceedings of the 18th International
Conference on Security and Cryptography (SECRYPT).

[19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[20] A Ker, T Pevny, M Kopp, and J Kroustek. 2016. Malicons: detecting payload in
favicons. Electronic Imaging: Media Watermarking, Security, and Forensics 2016
2016 (2016).

[21] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever, Yizheng Chen, Rosa
Romero-Gómez, Nikolaos Pitropakis, Nick Nikiforakis, and Manos Antonakakis.
2017. Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 569–586. https://doi.org/10.1145/3133956.3134002

[22] Benjamin Kuhnert, Jessica Steinberger, Harald Baier, Anna Sperotto, and Aiko
Pras. 2017. Booters and Certificates: An Overview of TLS in the DDoS-as-a-
Service Landscape. In 2nd International Conference on Advances in Computation,
Communications and Services, ACCSE 2017. IARIA/Thinkmind, 37.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[24] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2022. MTEB:
Massive text embedding benchmark. arXiv preprint arXiv:2210.07316 (2022).

[25] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[26] Daniel Plohmann, Khaled Yakdan, Michael Klatt, Johannes Bader, and Elmar
Gerhards-Padilla. 2016. A comprehensive measurement study of domain generat-
ing malware. In 25th USENIX Security Symposium (USENIX Security 16). 263–278.

[27] AmazonWeb Services. 2024. Amazon Titan Text Embeddingsmodels. https://docs.
aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html. Ac-
cessed: 2024-07-02.

[28] Wan-Chen Shi and Hung-Min Sun. 2020. DeepBot: a time-based botnet detection
with deep learning. Soft Computing 24, 21 (2020), 16605–16616. https://doi.org/
10.1007/s00500-020-04963-z

[29] Andreas Theofanous, Eva Papadogiannaki, Alexander Shevtsov, and Sotiris Ioan-
nidis. 2024. Fingerprinting the Shadows: Unmasking Malicious Servers with
Machine Learning-Powered TLS Analysis. In Proceedings of the ACM on Web
Conference 2024 (WWW’24). Singapore.

[30] Ivan Torroledo, Luis David Camacho, and Alejandro Correa Bahnsen. 2018. Hunt-
ing Malicious TLS Certificates with Deep Neural Networks. In Proceedings of
the 11th ACM Workshop on Artificial Intelligence and Security (AISec’18). Toronto,
Canada, 64–73.

[31] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus,
Arkady Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. 2024.
Replacing Judges with Juries: Evaluating LLMGenerations with a Panel of Diverse
Models. arXiv:2404.18796 [cs.CL] https://arxiv.org/abs/2404.18796

[32] VirusTotal. 2023. Retrieved January, 2024 from https://www.virustotal.com/gui/
home/search

[33] Gaute Wangen. 2015. The role of malware in reported cyber espionage: a review
of the impact and mechanism. Information 6, 2 (2015), 183–211.

[34] Ying Xing, Hui Shu, Hao Zhao, Dannong Li, and Li Guo. 2021. Survey on Botnet
Detection Techniques: Classification, Methods, and Evaluation. Mathematical
Problems in Engineering 2021, 1 (2021), 6640499. https://doi.org/10.1155/2021/
6640499 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/6640499

[35] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming
Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the Power of
LLMs in Practice: A Survey on ChatGPT and Beyond. ACM Trans. Knowl. Discov.
Data 18, 6, Article 160 (apr 2024), 32 pages. https://doi.org/10.1145/3649506

[36] Hossein Rouhani Zeidanloo, Mohammad Jorjor Zadeh Shooshtari, Payam Vah-
dani Amoli, M. Safari, and Mazdak Zamani. 2010. A taxonomy of Botnet detection
techniques. In 2010 3rd International Conference on Computer Science and Infor-
mation Technology, Vol. 2. 158–162. https://doi.org/10.1109/ICCSIT.2010.5563555

https://sslbl.abuse.ch/ssl-certificates/
https://sslbl.abuse.ch/ssl-certificates/
https://blog.voyageai.com/2024/05/05/voyage-large-2-instruct-instruction-tuned-and-rank-1-on-mteb
https://blog.voyageai.com/2024/05/05/voyage-large-2-instruct-instruction-tuned-and-rank-1-on-mteb
https://www.usenix.org/conference/usenixsecurity22/presentation/alahmadi
https://www.usenix.org/conference/usenixsecurity22/presentation/alahmadi
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
https://arxiv.org/abs/2010.10392
https://arxiv.org/abs/2010.10392
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/SECURWARE.2009.48
https://doi.org/10.1109/SECURWARE.2009.48
https://doi.org/10.1145/3133956.3134002
https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html
https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html
https://doi.org/10.1007/s00500-020-04963-z
https://doi.org/10.1007/s00500-020-04963-z
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796
https://www.virustotal.com/gui/home/search
https://www.virustotal.com/gui/home/search
https://doi.org/10.1155/2021/6640499
https://doi.org/10.1155/2021/6640499
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1155/2021/6640499
https://doi.org/10.1145/3649506
https://doi.org/10.1109/ICCSIT.2010.5563555

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 TLS Certificate Preprocessing
	3.2 TLS Certificate Embedding Strategies
	3.3 Generative LLM Embedding Model Selection
	3.4 Classifying an Unseen TLS Certificate using kNN and FAISS

	4 Experimental Setup
	4.1 Datasets
	4.2 Data Partitioning and Cross-Validation
	4.3 Evaluation Metrics

	5 Results
	5.1 Embedding Strategy Ablation Study
	5.2 Distance Metric Ablation Study
	5.3 Embedding Model Ablation Study
	5.4 Held-out Unseen Test Data Evaluation
	5.5 Simulated Future TLS Certificate Detection Evaluation
	5.6 Simulated Zero-day C&C Group Evaluation
	5.7 Comparison between k=5 and k=1
	5.8 In the Wild - Real World Data Evaluation
	5.9 Discussion: the Build vs. Buy Decision

	6 Conclusion and Future Work
	References

