
ANALYSIS OF CELLULAR BASED
 INTERNET OF THINGS
 (IOT) TECHNOLOGY

WHITE PAPER

Deral Heiland - Principal Security Researcher (IoT), Rapid7

Carlota Bindner - Lead Product Security Researcher, Thermo Fisher Scientific

2

CONTENTS
Introduction 3

CAT-M and NB-IoT Cellular Technology Overview 3

 CAT-M or LTE CAT-M1/CAT-M2 4

 Narrow Band IoT (NB-IoT) or CAT-NB1/CAT-NB2 4

Cellular Module Review 5

Circuit Board Layout Analysis 11

AT Commands Overview 23

Inter-chip Communication Data Capture and Analysis 28

 General UART Examination 28

 USB Examination and Evaluation 30

 MAIN UART Leveraged for Command Injections 33

Conclusion 37

References 37

3

INTRODUCTION
In recent years, the increased use of cellular communications in Internet of Things (IoT)
technology has played a crucial role in enabling communication with IoT devices that lack
wired internet access. In addition, cellular communication is now commonly relied upon as
a backup solution for wired connections like ethernet or Wi-Fi should they fail. Common
devices that have adopted cellular communication include cameras, GPS trackers, home
and building security systems, and medical devices.

Given the significant potential for this trend to continue, security researchers must focus on
comprehending this technology, its applications, and developing hardware testing methods
to evaluate the end-to-end security of cellular-based devices. Consequently, this paper
aims to address this topic and explore various testing methodologies.

CAT-M AND NB-IOT CELLULAR
TECHNOLOGY OVERVIEW
Since the first cellular phone service appeared in 1983, cellular technologies have been
rapidly adopted for portable computing, including notebooks, laptops, and smartphones.
Despite cellular technology becoming ubiquitous, it often comes at a premium price, with
the cost being proportional to the bandwidth used. Most IoT devices consume a fraction
of the data used for email, browsing, and video streaming, making traditional cellular
communications cost-prohibitive.

Additionally, reliance on low voltage batteries with limited power output and small form
factors complicated cellular technology use by IoT devices. Yet, a growing number of
IoT devices are leveraging cellular communications as either a primary or secondary
communication platform. The introduction of CAT-M and NB-IoT has facilitated cellular
communications for IoT devices.

CAT-M and NB-IoT are communication standards developed by the Third Generation
Partnership Project (3GPP). These standards focus on providing low-power wide area
network (LPWAN) radio communications for supporting IoT technology, which is focused
on machine-to-machine (M2M) communication. 3GPP initially released these standards
with Release 13 in 2015, followed by further improvements and updates in Release 14 in
2017.

CAT-M and NB-IoT are complementary standards that excel in different use cases. These
standards now allow IoT devices to communicate directly to the cloud via cellular services
and no longer require local aggregation via bridging technology.

3

https://www.3gpp.org/images/articleimages/iot_summary_large.jpg
https://www.3gpp.org/specifications-technologies/releases/release-13
https://www.3gpp.org/specifications-technologies/releases/release-14

4

CAT-M OR LTE CAT-M1/CAT-M2

Although the 3GPP standards include several variations of CAT-M, for consistency this
paper will focus on the generally referenced standard LTE CAT-M1, which supports a
bandwidth of 1.08 Mhz. The mode of operation supported by CAT-M1 is in-band LTE. In-
band signaling is when the data is transferred within the standard LTE band or channel
used for general communication.

CAT-M1 features include upload and download speeds of up to 1 mbps, which is higher
than NB-IoT, and lower latency of 10 to 15 ms. In addition, the CAT-M1 standard supports
half or full-duplex, and has enough bandwidth to support voice communication if needed.
As a result, CAT-M1 is commonly used for IoT machine communication where more
bandwidth is required. Examples of devices that use CAT-M1 include camera systems,
alarm systems, and vehicle data collection devices.

NARROW BAND IOT (NB-IOT) OR CAT-NB1/CAT-NB2

Like CAT-M, the 3GPP standard for NB-IoT has variations. In this case, the overview will
cover the overarching features of NB-IoT. NB-IoT has a maximum bandwidth of 180 kHz
and only supports half-duplex communication. Similar to CAT-M1, NB-IoT uses in-band
LTE, although it has the added feature of using either LTE guard bands or standard mode.
Guard bands are narrow frequency ranges used for separating wider frequency ranges not
typically used for communication, while standard mode leverages unused GSM bands.

Due to limited bandwidth, NB-IoT is best suited for IoT with limited complexity and low
bandwidth requirements. Although it has lower bandwidth capabilities, NB-IoT excels in
reduced power consumption compared to CAT-M1, making it well-suited for use in IoT
technology dependent on battery power. This standard is often used by gas and water
meters and low-power consumption sensors.

Both CAT-M1 and NB-IoT standards support Extended Discontinuous Reception (eDRX)
and Power Saving Mode (PSM) functionalities. These features allow the device’s cellular
communication to go into a powered-down sleep mode when data transfers are not
required, further reducing energy consumption. In the case of NB-IoT, this can extend
battery life for years, potentially up to a decade. Furthermore, since the long-term cost
associated with cellular is often based on bandwidth usage, these standards have
significantly reduced operation costs, making it possible to deploy cellular technologies into
increasingly more IoT products.

Since the initial release, 3GPP has published followup standards, including releases 15, 16,
and 17. These three releases mainly focused on various improvements to current features,
which involved:

Network operation and efficiency

• Access control

• Small-cell support

• Power management

• Improved support of 5G services and features

https://www.everythingrf.com/community/what-is-edrx
https://www.sharetechnote.com/html/Handbook_LTE_PSM.html
https://www.u-blox.com/en/blogs/tech/powering-ten-years-nb-iot-connectivity-single-battery
https://www.u-blox.com/en/blogs/tech/powering-ten-years-nb-iot-connectivity-single-battery
https://www.3gpp.org/specifications-technologies/releases/release-15
https://www.3gpp.org/specifications-technologies/releases/release-16
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.5gamericas.org/wp-content/uploads/2021/01/InDesign-3GPP-Rel-16-17-2021.pdf

5

CELLULAR MODULE REVIEW
In 2022, global shipments of IoT cellular modules grew 14% year-over-year, according to
Counterpoint’s Global Cellular IoT Module and Chipset Tracker by Application report. In
the first quarter of 2023, Quectel was the leading manufacturer in the IoT cellular market,
accounting for 37.2% of global cellular IoT module shipments. Other manufacturers that
accounted for just over half of IoT cellular module shipments included Telit Cinterion,
Fibocom, China Mobile, and Sunsea.

During the initial selection of devices, we focused primarily on GPS trackers that used either
NB-IoT or CAT-M for cellular communications and could be readily purchased on the open
market. We later widened our device type search to other areas, including cellular modems
and field cameras. While we performed reconnaissance on devices using FCC IDs when
available, we could not identify the cellular modules used by all devices before purchase.
We found 10 of the 14 devices we initially reviewed used Quectel or Telit Cinterion modules
based on FCC documentation.

One of the Quectel modules encountered was the Quectel EG91-NAXD, part of the Quectel
LTE EG91 series that supports LTE CAT-M1, found in two different field camera models
from the same manufacturer. The Quectel LTE EG91 series is pin-to-pin compatible with
Quectel’s UG95, UG96, BG95, and BG96 modules. The pin-to-pin compatibility allows
device manufacturers to swap modules, which allows changing modules for cost savings
or if supply chain availability affects a particular cellular module version. As a result, two
devices with the same make and model may have a different cellular module in use if they
were manufactured at different times. Figure 1 shows the Quectel EG91-NAXD from one of
the field cameras.

Figure 1. Quectel EG91-NAXD on Field Camera PCB

https://www.counterpointresearch.com/insights/global-cellular-iot-module-shipments-2022/
https://www.counterpointresearch.com/insights/iot-module-shipments-q1-2023/

6

Figure 2. Quectel BC26 in Cellular Modem

In addition to the field camera, a Quectel BC26 cellular module was found in a USB
cellular modem, as shown in Figure 2. At the time of writing, a search on the Quectel
website returned no information on the Quectel BC26 or product end-of-life notification
that would indicate it had been discontinued. We found information for the Quectel BC26
from third-party seller listings and developer forum posts, which indicated it was still for
sale and actively used for development. The Quectel BC26 provides CAT NB1 connectivity
with support for various network protocols and multiple serial ports, including one for AT
command and data transmission and two more for debug and serial connection.

In other devices, we found an array of Telit Cinterion modules, including some labeled
as Telit and others as Cinterion. The label difference is due to Cinterion’s incorporation
of Thales’s cellular IoT products in 2022. Figure 3 shows the Telit ME910CE-NA used
in a compact cellular modem purchased for research. Like the Quectel BG91, the Telit
ME910CE-NA supports CAT-M1 and NB1 communications and industry-standard
interfaces, including USB, UART, SPI, and I2C.

Figure 3. Telit ME910C1-NA in Cellular Modem

7

Figure 4. Cinterion Cellular Module in GPS Tracker

Another Telit Cinterion cellular module, the Cinterion S30960-S6200-A100-1, was found in
a GPS tracker with a U-Blox SAM-M8Q smart antenna module, as shown in Figure 4.

In addition to Quectel and Telit Cinterion modules, other cellular manufacturers were
represented in GPS trackers purchased for research. After Quectel and Telit Cinterion,
U-Blox cellular modules were third most common in the GPS tracking devices, including
the SARA-R412M, SARA-U201, LISA-C200, and LEON-G100. Figure 5 shows the U-Blox
SARA-R412M found in a pet tracker. The SARA-R412M provides multi-region support
using both CAT M1 and NB1, features an integrated GNSS receiver for positioning,
and supports multiple networking protocols focusing on MQTT for low-bandwidth
communications.

Figure 5. U-Blox SARA-R412M in GPS Tracker

8

Figure 6. U-Blox LEON-G100 Cellular Module

While we intended to select devices using cellular modules currently on the market, two
of the U-Blox cellular modules in vehicle trackers purchased for our research had been
discontinued, the LEON-G100 and the LISA-C200. Figure 6 shows the LEON-G100
cellular module found in a vehicle tracker purchased in 2021, while U-Blox’s End-of-Life
announcement for the module was released on May 19th, 2017. Finding cellular modules
no longer supported by the manufacturer in new devices demonstrates that End-of-Life
(EoL) components continue to persist not only in currently deployed products but also in
current inventory awaiting sale.

In addition to U-Blox, we found one Nordic cellular module in a pet tracker. Figure 7 shows
the Nordic nRF9160-SICA-R module, which had an ARM Cortex-M33 that supported
LTE CAT M1 and NB1 communications and included SPI, I2C, and UART interfaces. The
Nordic nRF9160-SICA-R was one of the smallest cellular modules with a package size of
10x16x1.04 mm LGA.

Figure 7. Nordic nRF9160-SICA-R Module

https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF9160-SiP-product-brief.pdf

9

In addition to cellular-enabled devices, we also purchased development kits for cellular
modules found in the consumer products purchased or in the same product line. This included
a Telit Bravo Rev D board with a ME910C1-WW module and a U-Blox EVK-R4 evaluation kit
with a SARA-R410Mc cellular module, as shown in Figure 8 and Figure 9, respectively.

Figure 8. Telit Bravo Rev D Board

Figure 9. U-Blox EVK-R4 Evaluation Kit

Additionally, we found some development boards which supported different cellular modules
using various connectors. Figure 10 shows the Cinterion LGA DevKit development board,
which included a socket that could accommodate different Cinterion cellular modules.

https://www.telit.com/support-tools/development-evaluation-kits/telit-bravo-evaluation-kit/
https://www.u-blox.com/en/product/evk-r4

10

Figure 10. Cinterion LGA DevKit with Small Socket

The Quectel UMTS & LTE EVB kit supports four module types, including automotive,
LPWA, LTE Standard, Wi-Fi/Bluetooth, and multiple cellular mobiles for both LPWA and
LTE Standard.

Figure 11 shows the Quectel UMTS<E-EVB-KIT with an EG91-NA module.

Figure 11. Quectel UMTS<E-EVB-KIT with an EG91-NA module

https://www.quectel.com/product/umts-lte-evb-kit/

11

CIRCUIT BOARD LAYOUT ANALYSIS
When examining cellular modem modules on IoT devices, it is crucial to comprehend the
circuit layout and orientations on the circuit board in relation to other components, such as
the device’s primary CPU. Additionally, you should consider the following factors:

• How are cellular modules oriented on the circuit board?

• How can this orientation information be used during testing to find potential
communication test points?

• How do we access these communication test points even if they are not readily
available on the circuit board’s surface?

In this section, we will disassemble a couple of cellular-enabled devices to address the
questions mentioned above and explore various examination and hardware interaction
methodologies.

It is important to note the methodologies discussed here can be used on other circuit
technologies besides cellular.

The first example we looked at was a Telit GE910 cellular module used in a home security
system. Initially, we tried to understand the orientation of the cellular modem and its
potential communication paths on the circuit board to identify connection points for testing,
such as:

• Main UART

• Debug UART

• USB

Like most IoT devices, we examine the circuit board to identify all components, gather
needed manufacturer’s datasheets, and check to see if there are any good markings on the
circuit board to identify points of interest. Once that analysis is complete, if you still need to
better identify points of interest, the next method we use is a transparency overlay of the
circuit board images.

By using the obverse (frontside) and reverse (backside) of the circuit shown below in Figure
12 and Figure 13, we produce an image as shown in Figure 14, which shows components
on both sides of the board in reference to each other. This helps visualize key components
on each side of the board in reference to each other and potential circuit paths.

https://www.youtube.com/watch?v=VcXPw7-eTx8

12

Figure 12: GSM Telit GE910 Cellular Board Obverse Image

Figure 13: GSM Telit GE910 Cellular Board Reverse Image

Figure 14: GSM Telit GE910 Cellular Board Transparency Overlay

Figure 15: Telit GE910 LGA Pinout Layout Overlay on Transparency

In the final part, we will often overlay the cellular modem device’s Land Grid Array (LGA)
mapping from available datasheets. This allows us to quickly find where the cellular
modem module’s core communication connections are (UART, USB), and identify potential
contact point locations on the circuit board so we can tap into them. An example of this
concept is shown below in Figure 15:

https://www.telit.com/ge910-quad-v3-download-zone/

13

The above method works well for establishing a general starting point for identifying the
areas of the circuit board that are most likely to have a potential location for connecting to
communication points on the circuit board for testing. Although, in some cases, we have
found well-designed circuit boards that do not expose easily accessible communication
points on the board’s surface, but appear to be leveraging sublayers of the board. In this
section, we also want to explore another method for connecting to communication points
not directly exposed on the top layers of the circuit board.

We will refer to this method as submodule unit access (SUA). In this process, we take
advantage of the fact that the most valid communication connection on cellular modules
LGA pads typically runs around the outer perimeter of the cellular modules. For example,
Figure 16 shows the measurement diagram from the BG95 hardware design manual and
grid array of Quectel BG95 module, which shows that the points of interest are within .2
mm of the module’s edge.

Figure 16: Quectel BG95 Pin-out Diagram and Module Side-by-Side Comparison

Figure 17: Wide-view and Side-view of Quectel BG95 Module

With that knowledge, it is possible to make entry from the side along the plane of the
circuit board surface to establish a connection to needed communication points, such as
USB, MAIN UART, and UART DBG. Figure 17 demonstrates a side view of the Quectel
BG95 module attached to a circuit board showing a small gap and individual LGA pad
connection points.

https://images.quectel.com/python/2023/04/Quectel_BG95_Series_Hardware_Design_V1.5.pdf

14

To attach to these contact points under the cellular modules, we used acupuncture needles
(probes) to tap into the device’s UART communication. Using different size acupuncture needles
(.15 - .35 mm) we built several test probes. We purchased these probes — acupuncture-style
needles — from online retailers selling them for cleaning out 3d printer nozzles.

Figure 18 shows an example of an assembled test probe consisting of an acupuncture
needle and jumper wire connected using heat shrink butt connectors. During testing, we
found that the larger needles (.35mm) were easier to work with when connecting to LGA
modules where the pads were closer to the edge of the modules. The reason for this was
the thicker probes were less flexible.

 Figure 18: Test Probes Assembled from Acupuncture Needles

Figure 19: Probes Inserted Parallel to PCB with Kapton Tape

Before inserting probes under the cellular module edge, any exposed components on the
circuit board should be covered with insulation tape to prevent shorting the probes. To do
this, we used Kapton tape. It is also possible to wrap the probe needle, except the very end,
in Kapton tape to insulate it from shorting. Also, during this process, we noted that entry
under the modules must be made by remaining parallel with the PCB surface as much as
possible to avoid damaging solder masking, which could lead to shorting out the probe. An
example of this is shown in Figure 19.

https://croylek.com/knowledge-base/what-is/kapton-tape#:~:text=Electrical%20insulation%20is%20one%20of,areas%20during%20painting%20or%20plating

15

Once probes were inserted, getting them to remain in place was problematic. To do this,
we used a flexible adhesive called E6000, which can be easily removed after work is
completed. This adhesive had issues adhering to the stainless-steel probes and required
us to add more E6000 covering a larger section of the probe body to prevent probes
from being dislodged. Further adhesive testing was conducted using different adhesives,
including a couple of different brand super glues and various forms of UV set solder masks
and resins. Ultimately, we found the E6000 to be the most effective method for holding the
acupuncture probes in place.

Once the probes were secured with adhesive, we tested the reliability of the overall process
by reinstalling the cellular control board, attaching the probes to a Saleae logic analyzer,
and powering up the devices, as shown in Figure 20.

We also examined the use of this method on larger cellular modules where the LGA
contact points were further from the edge of the module. In the case of the Quectel EG91,
the LGA connection points were 2.75mm from the edge of the module body with a gap
along the edge that was not wide enough to properly insert any size acupuncture probes
to make contact with LGA connection points. So this method was found to be most
effective against smaller-sized cellular modules where the LGA lands are nearest to the
module edges.

The final mechanical methods we want to examine in this paper are potentially more
destructive and require actually removing and reinstalling the cellular module. If care and
patience are taken, these methods can be very effective, allowing access to more easily
map out critical circuit paths or modifying existing circuit board traces to allow for access
to critical communication points. In this section, we will examine a Quectel EG91-NAXD
module used in a trail camera, as shown in Figure 21.

 Figure 20: Saleae Connected to Probes Inserted Under the Cellular Module

https://eclecticproducts.com/product/e6000-industrial-adhesive/

16

To remove a cellular module, the method we prefer involves using an Infra-Red (IR) reflow oven.
However, this process can be accomplished with directed IR or hot air systems combined with
a preheater hot plate. Setting up a temperature curve to heat the board and chip at a rate that
does not shock or damage the chip is critical, and the hardest part of this process.

To accomplish this in an IR reflow oven, we must also consider the complete mass of the
circuit board, which must be brought to the melting temperature of the solder (183 Celsius)
before components, such as the cellular module, will be released. To do this, we set our
IR reflow oven temperature curve to rise to match manufacturer recommendations, often
defined within the datasheets, along with an extending time and higher peak temperature
set to approximately 240-250 Celsius on average and vary the length of time the reflow
oven stays at that temperature based on the size and thickness of the overall circuit board
to which the cellular module is mounted.

With that said, it is important to remember that individual components on the circuit, such
as memory and CPU chips, can easily be damaged if they reach a temperature of 215
Celsius or higher. Also, when the module is ready to be removed, caution should be taken,
as all components on the circuit board are loose, and it is very easy to accidentally dislodge
other components, especially when working with very small circuit boards.

Furthermore, when removing larger cellular modules with a suction tool, it is not uncommon
to just pull off the shielding and not remove the module. In those cases, we have been
able to either slide the module off the board without dislodging other components or use a
cellular phone repair tool with a wide blade, as shown in Figure 22. The wider blade can be
inserted under the module body to help lift the module from the surface.

Figure 21: Quectel EG91-NAXD on Trail Camera’s PCB

17

Once the module has been removed from the circuit board, we can examine the LGA
layout, and use a multimeter set on continuity check to help trace out the communication
lines we would be interested in accessing, as shown in Figure 23.

For example, in Figure 24, we can see that the Main UART communication lines, labeled
in yellow and blue, were routed in a direction under the module body, which would have
impacted our transparency overlay method used for finding possible communication on the
circuit board, as described at the beginning of this section. Although chip-off examination
adds a level of complexity to the testing process, this example helps emphasize the value
in chip-off examination methods.

Figure 22: Thin Blades for Removing Components

Figure 23: Footprint of Quectel EG91-NAXD on Trail Camera’s PCB

18

In addition to examining the PCB traces for UART, we were able to map out USB
communication lines. Cellular devices typically do not use both USB and the Main UART
for transmitting data or controlling the cellular module. Most often, the one (USB or Main
UART) not in use will have its LGA lands not connected to any circuit paths on the circuit
board, which can indicate the one currently in use.

Additionally, while examining the board with the cellular modules removed and comparing
other connection points to the pinout diagram within the EG91 Series design manual, we
identified the USB_Boot circuit layout. USB_Boot is used to place the device into a mode
for conducting firmware upgrade processes. Examining our device, we also see that the
circuit board contains most of the circuit designed to support that functionality, as shown in
Figure 25.

Figure 24: UART Traces Highlighted on PCB

Figure 25: USB_Boot Pin on PCB

https://fcc.report/FCC-ID/XMR202008EG91NAXD/4891783.pdf

19

It can often be difficult to locate USB communication tap points on a circuit board. This
is because, in many cases, those communication lines are routed via the sublayers on
the circuit board and not easily accessible. However, many times we have found that
the USB circuit path between the cellular module and CPU involved the installation of
resistors inline. When that is the case, the USB circuit paths are routed to the circuit board’s
surface for that purpose. In some cases, to effectively map out those USB paths, it may be
necessary to also remove the primary CPU if it is on the same circuit board. For the device
we are examining, that was not the case, and we could easily identify various tap points on
the circuit board, as shown in Figure 26. Also shown in Figure 26, the USB communication
line does have resistors installed inline, as mentioned above.

To prepare the USB communication for analysis, we also needed to install 20-40 ohm
resistors between the USB D+ and D- lines and the testing gear. Adding these resistors
helps to prevent impedance mismatching and signal echos that would degrade the USB
communication signals. In our case, we installed surface mount device (SMD) size 0601
33 ohm resistors directly on the circuit board next to the inline resistors already installed,
which would allow us to attach test gear later during signal capture and analysis. A
sample of this is shown in Figure 27.

Figure 26: USB Inline Resistors on PCB

Figure 27: Installation of Additional Resistors

20

To better streamline this for future research, we decided to build a USB test jig, which could
then be attached to the target device and or piggybacked onto the circuit board using
E6000 adhesive. Building out the prefabricated test jigs, we purchased USB micro breakout
boards and cut the circuit traces for D- and D+, then soldered SMD size 0402 33 ohm
resistors in place, as shown in Figure 28.

In this final section of the Circuit Board Layout Analysis, we want to cover those rare cases
where we may find a need to alter the circuit board design to better support the testing
work and to gain access to communication features for the cellular device. Although the
need for this is rare, it is important to understand the processes and also have the skills to
do the work. Building and understanding the skills needed ahead of time will help facilitate
a more streamlined and timely effort versus wasting time with trial and error efforts when
required.

Although not needed in our test example, we decided to walk through the process of board
alteration to add lines from the EG91 LGA pads for Main UART out to an easily accessed
point on the circuit board. Figure 29 shows the LGA pads of interest.

Figure 28: Installation of Resistors on USB Test Jig

Figure 29: Identified Main UART LGA Pads

21

Some of the supplies we used for the exercise example included circuit board traces, a
pad repair kit, and UV solder mask ink, as shown in Figure 30. We tested several brands
of UV ink and found all required a long UV set time to cure. This set time varied from a few
minutes to 10+ minutes based on how thick the UV solder mask was applied.

In the first step, we peeled off the copper repair trace from the kit, which had a sticky back
that allowed us to place it on the circuit board to hold it in place. Note: These repair traces are
small and fragile and patience should be taken while handling them. In our case, this typically
took a couple of tries before we did it correctly without damaging the fragile traces.

Besides using a circuit board repair kit, it was also possible to use thin gauge wire, such as
40 gauge or smaller. Once we had the repair traces properly placed, we tinned the LGA pad
and the trace connected to the LGA pad so that proper electrical continuity could be validated
between the LGA pad and the repair trace pad. Once that was validated, we applied the UV
solder mask to electrically insulate the added trace, and hold it in place. We then set the UV
solder mask with a UV lamp, as shown in Figure 31 and Figure 32, respectively.

Figure 30: Pad Repair Kit and UV Solder Mask Examples

Figure 31: Installed Repaired Traces

22

Next, we tinned the repair trace pads, added more UV solder mask around the pad, and
cured it to strengthen it further, as shown in Figure 33. This was done to avoid accidentally
damaging the pads later when connecting them for testing purposes.

The final step was re-attaching the cellular module by reflowing it on with an IR oven. To
re-attach, there are several methods available. Often the solder paste is applied using
a screen that matches the LGA layout for that module. Diagrams of these screens are
typically available from the manufacturer. If solder screens are not readily available, using
solder paste correctly can often be problematic. In those cases, we have successfully used
BGA balls applied to the cellular module with much success.

An example of this process is demonstrated in Figure 34, where BGA balls were used and
then reflowed within an IR oven using the manufacturer’s recommended temperature
curve. The final results after reassembly show the added circuit traces and pads in the right
side image of Figure 34.

Figure 32: Hardening UV Mask with UV Lamp

Figure 33: Tinned Repair Trace Pads and Set UV Mask

Figure 34: Reflowed BGA Balls with an IR-Oven

23

AT COMMANDS OVERVIEW
AT commands, short for “Attention Commands,” are instructions that allow a host controller
to control and debug a modem. AT commands, originally known as the Hayes command
set, were developed in 1981 for the Hayes Smartmodem 300. The original Hayes
command set allowed for dialing, hanging up, and configuration of the modem.

To support new functionality available with 1200 and 2400 baud modems, a Hayes
extended commands set was created with the new commands denoted by including an
ampersand (&) prefix. By the early 1990s, with the introduction of the 14.4 and 28.8 kbit/s
modems, modern AT commands heavily based on the original Hayes extended set were
widely adopted by most modem manufacturers.

The original Hayes extended command set influenced the modern universal AT commands.
While AT commands are often common across different modems, AT commands for
cellular modems have been defined in Technical Specifications (TS). In particular, the
ETSI GSM TS and 3GPP TS 27.007 technical specifications apply to cellular modules that
support NB-IoT and CAT-M1/M2. During our research, we also found cellular module
manufacturers, such as Telit, U-Blox, Quectel, and Nordic, implemented proprietary AT
commands for use in their cellular modules. AT commands in mobile communications can
be used to perform many actions including, but not limited to:

• Obtaining device or manufacturer information

• Accessing SIM and network information

• Scanning for and registering with supported networks and radio types

• Receiving updates about network conditions

• Waking and putting the device to sleep

• Receiving and sending SMS and calls

• Sending data via TCP/IP

There are four (4) main AT command types, including test, read, write, and execute. The
command type informs the syntax of the command. Each AT command begins with the
prefix ‘AT’ or ‘at’ followed by a command. The command portion may contain one or
more fields or suffixes, which indicate the command mode or ‘type’ and a data field for
commands that support or require data. The table below outlines the command syntax
associated with the main AT command types.

https://www.etsi.org/deliver/etsi_gts/07/0707/05.00.00_60/gsmts_0707v050000p.pdf

24

Note that AT commands can be sent individually, with each AT command terminated by a
carriage return or multiple commands placed on the same line with a single AT prefix at the
beginning of the line followed by individual commands separated by a semicolon.

The 3GPP TS 27.007 details a standard AT command set for controlling Mobile Termination
(MT) functions and network services from Terminal Equipment (TE) through Terminal
Adapter (TA). The 3GPP TS 27.007 used commands from ITU T Recommendation V.250
and existing digital cellular standards whenever applicable.

Some examples of common AT commands include:

• AT: This is the most basic AT command, confirming that the modem and host
system can communicate, denoted by an ‘OK’ response.

• AT&F: This command sets all modem parameters to manufacturer defaults.

• AT+CPIN: This command can query whether the module requires a PIN, which is
necessary for registration, and be used to set the PIN. By issuing this AT command
with a question mark (?) at the end, the cellular module will respond with whether
a PIN is set, whereas issuing this command with an equal sign (=) followed by
alphanumeric characters will set a PIN.

• AT+CGSN: This command requests the product serial number identification or the
International Mobile Equipment Identifier (IMEI).

• AT+CLAC: This command will return a list of AT commands available to the user.

As mentioned previously, manufacturers can implement their own proprietary commands
for use with their cellular modules. Based on AT command documentation and articles,
manufacturer proprietary commands can be identified based on the syntax adopted by the
manufacturer.

Type Syntax Function

Test AT+<COMMAND>=?
Returns parameters and value
ranges set by <COMMAND>.

Read AT+<COMMAND>?
Returns the current parameter
values.

Write AT+<COMMAND>=<User Input>
Sets command parameters to user-
defined values.

Execute AT+<COMMAND>
Executes the command. May
function similarly to read returning
non-variable parameters.

https://www.itu.int/rec/T-REC-V.250-200307-I/en
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1515

25

Examples of cellular module manufacturer’s proprietary AT command syntax include:

• Quectel: AT+Q<COMMAND>

• U-Blox: AT+U<COMMAND>

• Telit: AT@<COMMAND>, AT#<COMMAND>, AT$<COMMAND>, or
AT*<COMMAND>

• Nordic: AT%<COMMAND>

Since AT commands are used to perform various functions on a cellular modem,
unauthorized use poses an inherent security risk to cellular-enabled devices. We reviewed
previous security research on AT command vulnerabilities and found it focused on the
Android ecosystem and smartphones. In particular, a research project called ATtention
Spanned released a research paper at USENIX in 2018 on vulnerable AT commands.
Additionally, we found a security paper titled “ATFuzzer: Dynamic Analysis Framework
for AT Interface for Android Smartphones,” which had a corresponding GitHub repository
where the researchers published the Python-based ATFuzzer tool.

As part of our research, we wanted to focus on the ability to intercept and identify AT
commands sent to the cellular module and attempt to inject AT commands. Since there are
both standard and custom AT commands, we used documentation released by vendors to
generate a list of possible AT commands. Manufacturers will often include AT commands in
cellular module documentation or AT command reference guides that have proprietary AT
commands, such as Telit’s AT Commands Reference Guide.

To automate testing AT commands against cellular modules, we created a couple of simple
Python scripts that can be used to send various AT commands when connected to the
Main UART of the cellular module. The scripts we generated are focused on the following
functions:

• Read command options

• Retrieve device settings and status

• Fuzz command options

Each script allows the user to configure the local UART interface within the script.
Additionally, the ATquery.py script allows users to select from common cellular module
manufacturers, including Quectel, Telit, and U-Blox, to read and test against common
AT commands. The CellModuleATFuzz.py script enables the user to input individual
AT commands for testing and fuzzing the various variables associated with each AT
command. The following section describes the syntax for using these various scripts.

The first script, ATquery.py, allows us to query the cellular module via serial connection to
carry out two possible options:

1. Identify which commands are functional by using the TEST switch, or

2. Query the available commands using the READ switch to retrieve the current setting
for that command, if available.

https://sixfab.com/wp-content/uploads/2021/02/Quectel_BG96_AT_Commands_Manual_V2.3.pdf
https://content.u-blox.com/sites/default/files/documents/LEXI-R4-SARA-R4_ATCommands_UBX-17003787.pdf
https://www.sparkfun.com/datasheets/Cellular%20Modules/AT_Commands_Reference_Guide_r0.pdf
https://docs.nordicsemi.com/bundle/ref_at_commands/page/REF/at_commands/syntax/at_syntax.html
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-tian.pdf
https://github.com/Imtiazkarimik23/ATFuzzer?tab=readme-ov-file
https://www.sparkfun.com/datasheets/Cellular%20Modules/AT_Commands_Reference_Guide_r0.pdf
https://github.com/dheiland-r7/CellMod

26

To initially set up the script, you must add the location path for the attached serial device to
this script. Currently, the change needs to be made on line 40, as shown below in Figure 35.

The syntax for this script is simple and takes two arguments. The first argument is for the
brand of the device being tested. The script currently supports the following manufacturers:

• CINTERION

• QUECTEL

• TELIT

• UBLOX

Note: The supplied AT commands do not include those that may negatively impact testing,
such as those that cause the cellular module to reboot, shutdown, sleep, or delete data,
which impacts desired functionality when testing.

The second switch is either READ or TEST. As mentioned above, the TEST switch returns
the command with the parameters and available input syntax data. The READ switch will
return the current setting under that command, if available. If the command or data are
unavailable, the device will return an error message for that AT command.

An example of the script ATquery.py being run against an EG91-NAXD cellular module
with the TEST switch set, as shown in Figure 36.

Figure 37 shows the script ATquery.py running against the EG91-NAXD cellular module
with the READ switch set.

Figure 35: Configuration of Serial Connection on Line 40 of ATquery.py

Figure 36: ATquery.py with TEST Switch Set for a Quectel Module

Figure 37: ATquery.py with READ Switch Set for a Quectel Module

27

The second script, CellModuleATFuzz.py, allows us to query the cellular module and inject
various values into the options available for an AT command. Upon initial execution of
CellModuleATFuzz.py, the user is prompted for an AT command. The script runs the TEST
version of the AT command and returns the available parameters and values. Figure 38
shows the initial prompt and supplied AT command “CMGL,” used to list either new (0),
read (1), stored and not sent (2), stored and sent (3), or all (4) SMS messages depending on
the value selected.

The Python script then requests the number of parameters for the supplied AT command and
user input for the parameters with an index beginning at zero (0), as shown in Figure 39.

Once the parameters are defined, a user can either select to fuzz all the parameters or
select individual parameters, as shown in Figure 40.

Figure 38: Initial Prompts for CellModuleATFuzz.py

Figure 39: User Input Configured for AT Command Parameters in CellModuleATFuzz.py

Figure 40: Selecting AT Command Parameters to Fuzz

28

The script will then use the supplied file of fuzzing payloads to test the selected
parameters. The output, including the command sent and the response, is printed to the
console and saved to a text file for easy review. Figure 41 shows the fuzzing initiated on
the AT+CMGL command.

INTER-CHIP COMMUNICATION DATA
CAPTURE AND ANALYSIS
In the following section, we focus on capturing data and understanding what is taking
place and possibly manipulating that data in some cases to allow for more advanced
security testing to take place. To effectively do these we need to first be able to capture the
data. Using the method described in the previous section, we can tap into Main UART and
USB communication for this purpose. In the following examples, we will be using a cellular-
based trail camera, which is using a Quectel EG91-NAXD cellular module to demonstrate
these processes.

GENERAL UART EXAMINATION

The first communication data we want to look at on this device is the UART. This cellular
module has two UART connections, one for device debug purposes (Debug UART) and one
for cellular data and/or AT commands (Main UART). When we attach to the Debug UART
we can see the device boot up and a login prompt show up. This boot process shows some
detailed messaging that can help reveal some details about the cellular module and its
current state. An example of this output of the cellular module device booting up is shown
in Figure 42.

Figure 41: Output for CellModuleATFuzz.py

29

Next, we focused on the MAIN UART port, which handles cellular communication and
associated cellular modem commands. Since this Main UART had communication going in
both directions (Inter-chip communication) between the cellular module and the CPU, it is
important to capture communication in both directions, represented in Figure 43.

To accomplish this, we used two FTDI serial to USB devices, represented in Figure 44,
attached the Rx (receiver) side of the FTDI devices to the device under test, and started
two instances of Coolterm, a serial application to the FTDI devices. When choosing FTDI
devices, it is important to match the device to the proper voltages of the UART you are
attaching to. This voltage is most often either 1.8vdc or 3.3vdc. In the case of the EG91
modules, the voltage being used is 1.8vdc, as identified within the available datasheets.

Figure 42: Debug UART Output

Figure 43: Inter-chip Communications Example

Figure 44: Placement of FTDI Serial Devices

https://freeware.the-meiers.org/

30

Using the methods described in the section “Circuit Board Layout Analysis,” we identified
the location of the Main UART — which is typically used for cellular data and or AT
commands — and attached a Saleae logic analyzer to the circuit to identify communication
and baud rate. With the Saleae logic analyzer, we determined the baud rate to be 115200
and that the CPU was not using the Main UART for cellular communication nor cellular
modem AT commands.

No data or commands were transmitted from the CPU side of the circuit. We only saw the
cellular module responding with an ‘RDY’ ready response when it powered up for initial
functionality. Additionally, we noted a ‘Powered Down’ response when the cellular module
was turned off or was placed into sleep mode. This indicated that the trail camera device
was configured for data and AT commands to flow from CPU over USB to the cellular
module device. An example of this Main UART communication from the cellular module on
the Saleae logic analyzer is shown in Figure 45.

USB EXAMINATION AND EVALUATION

Next, we focused on examining the USB communications of the sample device (a cellular
trail camera). Typical USB communication within IoT technology is the USB 2.0 standard
or a subset of that standard. The communication speed of USB 2.0, also known as high-
speed USB, is 480Mbps. To sniff and decode this traffic requires a device that can handle
communications at that speed. Typical logic analyzers are unable to sniff and decode high-
speed USB. Also, many USB sniffers are designed to only be placed in line to be able to
capture and decode USB traffic. In the case of high-speed inter-chip USB communication,
it is not possible to place a typical USB sniffer device inline. However, after some searching,
we found that the Beagle USB 480 product from Total Phase was capable of performing
inter-chip communication sniffing.

Using the configuration discussed in the section “Circuit Board Layout Analysis” for tapping
into USB inter-chip communication, we attached our USB sniffer to the device being tested,
as shown in Figure 46.

Figure 45: Main UART Communication Example from Trail Camera

https://www.synopsys.com/dw/dwtb.php?a=hsic_usb2_device
https://www.totalphase.com/

31

According to the manufacturer, to work properly, the Beagle also needs to detect the VBus
voltage, which would normally be detected when inline testing of USB devices. However,
since this is inter-chip communication and VBus is not always accessible, we tricked the
Beagle by supplying the 5v VBus to it via an external power supply, as shown in Figure 47.
The vendor also defines settings that can be made to the Beagle on their support site to
bypass the required detection of the 5v VBus.

The device under test had not yet been registered nor activated for cellular service, since
we wanted to capture the entire activation, configuration, and data transfer via the USB
sniffer. By doing this, it allows us to gather a full understanding of — from beginning to end
— how a hardware device is set up and integrated into a functioning ecosystem.

Once the sniffer application “Data Center”, which was provided by Total Phase, was
connected and started, we enabled filters to only show data packets. We quickly saw that
the CPU was sending AT command queries to the cellular module to make some general
settings and to check the status.

Since we had not requested activation of the product service as of yet, we see a number
of queries about setting and status showing that the service has not yet been activated.
For example, the CPU continued to make requests for the status of the network using the
command AT+QNWINFO to the cellular module, and the cellular module continued to reply
‘No Service,’ as shown in Figure 48.

Figure 46: Inline USB Sniffing

Figure 47: Attachment of an External 5V Power Supply for VBus

https://www.totalphase.com/support/articles/200350036-monitoring-an-embedded-usb-with-a-beagle-usb-protocol-analyzer/
https://www.totalphase.com/products/data-center/

32

Once the service activation occurs and the cellular module connects to the LTE-M1 cellular
services, the response to the AT+QNWINFO returns details on the current network status,
as shown in Figure 49.

Once the trail camera was configured to capture images and send the data to the available
cloud service via cellular communication, we captured key parts of that communication
as it flowed between the CPU and the EG91-NAXD cellular modules for transmission.
Analyzing this communication helps in properly identifying and understanding the
device’s end-to-end security and associated security configurations. Figure 50 shows
key authentication data being sent for authorization to Amazon S3 buckets and the
transmission of captured images and video.

Figure 48: Example Sniffing of AT Commands

Figure 49: AT Command Output Showing Connection Information

33

Exporting the captured USB communication data also allows for more detailed parsing and
examination of the captured information. For example, the above packets were exported
and then parsed to extract the ASCII data showing OAuth Authentication and S3 bucket
information, as shown in Figure 51.

MAIN UART LEVERAGED FOR COMMAND INJECTIONS

In the final part of the section, we want to circle back and further address how Main
UART could be used for testing. On this trail camera device, we found that the Main UART,
although electrically connected in-circuit, was not leveraged on this device for command or
data communication services.

During monitoring for communication, we only observed the cellular module responding
with an ‘RDY’ response when it powered up and became functional and a ‘Powered Down’
response when the cellular module was turned off or was placed into sleep mode. Through
that observation, we determined that the Main UART was functional and could be used to
send and receive command data to the cellular module. To test this option, the Main UART
TX and RX circuit traces between the CPU and cellular modem would need to be severed
to allow external injection of AT commands via serial FTDI, as shown in Figure 52.

Figure 50: Authorization and Transmission of Data

Figure 51: Traffic Capture of OAuth Authentication Information

34

To implement the above configuration, we located the Main UART circuit traces between
the CPU and the cellular module on the trail camera circuit board, cut the circuit traces,
and rerouted each side of the severed connection to a breakout board containing on/off
switches with 2.54mm headers and screw terminals, as shown in Figure 53 and Figure 54.
This allowed us to connect the device under test and needed test equipment (FTDI, Saleae
Logic Analyzer, etc.). This also allowed us to use the on/off switches to open and close
the Main UART communication circuit between the CPU and cellular module as needed.
Details of this alteration are shown in Figure 53.

Figure 52: Placement of FTDI Serial to USB Devices for Main UART Channel

Figure 53: Cut and Tap in Main UART TX and RX Circuit Traces

Figure 54: Attachment of Tapped Main UART TX and RX Leads to Switches

35

Once the trail camera circuit board was prepped and serial FTDI was connected, we
powered up the device and opened the on/off switches on the breakout board to sever the
Main UART inter-chip communications. Once we received the ‘RDY’ reply from the cellular
module, we were able to then send AT commands, and successfully received responses
from the EG91-NAXD cellular module. Figure 55 demonstrates the sending and receiving of
multiple AT commands.

During this testing, we also injected a full list of AT commands using the ATquery.py scripts
described in the AT Commands section and the QUECTEL AT command list, which we
created using available Quectel vendor AT manuals we could identify. With this script, we
identified that many AT commands were valid despite not being listed within the EG91 AT
manual nor being returned by the module when the AT+CLAC command was used. The
most interesting of these commands were communications commands for interacting with
FTP, HTTP or setting up and communicating over IP sockets.

Next, to test this undocumented functionality on the EG91-NAXD module and validate
what level of communication could be established outside of the cellular module’s purpose
within the trail camera, we used the trail camera’s installed cellular module (EG91-NAXD)
to establish an FTP connection to the internet and listed the files and folders on that server.
This was done by injecting specific AT commands to establish FTP connection to the server
over the internet and retrieve listing, as shown in Figure 56.

Figure 55: Successful Execution of AT Commands on Cellular Modules

36

It is also important to note, unlike the device we used in this test example, we have
encountered cellular-enabled IoT devices that were configured to only establish private
Virtual LAN (VLAN) or private cloud (VPC) connections into backend services and were not
accessible directly from the general internet IP address ranges.

This is typically done to add a higher level of security to those services by not having them
directly exposed to the internet. In those cases, communication functions on the cellular
module could potentially be leveraged to conduct further security testing into those private
VLAN environments using features such as MQTT, FTP, HTTP, and IP socket enablement
functions if available on the cellular module of the device being tested. Figure 57 visually
represents a high-level diagram of such use cases.

Figure 56: FTP Connection to Remote Server

Figure 57: Possible Communications Path of Private VLAN or Private Cloud Environments

37

CONCLUSION
In conclusion, the main purpose of this paper was to discuss various methods and
methodologies for interacting and working with cellular-based IoT technology for the
purpose of understanding and being able to effectively test these technologies. Although
this paper is only the starting point for being able to truly understand and conduct
thorough security testing of cellular IoT technologies, it has helped us build a solid baseline
to continue growing.

As with most projects, just the process of sharing this knowledge and working through
some of these methods and procedures has helped us further expand our areas of
knowledge. It is important to note that even beyond cellular-related device research, the
sections “Circuit Board Layout Analysis” and “Inter-chip Communication Data Capture and
Analysis” can also be easily applied to other embedded device testing and analysis work.

REFERENCES:

https://i.blackhat.com/USA-19/Wednesday/us-19-Shupeng-All-The-4G-Modules-Could-
Be-Hacked.pdf

https://pallavaggarwal.in/2023/11/08/quectel-ec25-cellular-modem-teardown/

https://www.5gamericas.org/wp-content/uploads/2021/01/InDesign-3GPP-
Rel-16-17-2021.pdf

https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/
uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf

https://www.nxp.com/docs/en/application-note/AN2265.pdf

https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-leveraging-inter-chip-
communication-analysis.pdf

https://github.com/FICS/atcmd

https://i.blackhat.com/USA-19/Wednesday/us-19-Shupeng-All-The-4G-Modules-Could-Be-Hacked.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Shupeng-All-The-4G-Modules-Could-Be-Hacked.pdf
https://pallavaggarwal.in/2023/11/08/quectel-ec25-cellular-modem-teardown/
https://www.5gamericas.org/wp-content/uploads/2021/01/InDesign-3GPP-Rel-16-17-2021.pdf
https://www.5gamericas.org/wp-content/uploads/2021/01/InDesign-3GPP-Rel-16-17-2021.pdf
https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.gsma.com/solutions-and-impact/technologies/internet-of-things/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.nxp.com/docs/en/application-note/AN2265.pdf
https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-leveraging-inter-chip-communication-analysis.pdf
https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-leveraging-inter-chip-communication-analysis.pdf
https://github.com/FICS/atcmd

3838

About Rapid7

Rapid7 is creating a more secure digital future for all by helping organizations
strengthen their security programs in the face of accelerating digital transformation.
Our portfolio of best-in-class solutions empowers security professionals to manage
risk and eliminate threats across the entire threat landscape from apps to the cloud
to traditional infrastructure to the dark web. We foster open source communities
and cutting-edge research–using these insights to optimize our products and arm
the global security community with the latest in attacker methodology. Trusted by
more than 11,000 customers worldwide, our industry-leading solutions and services
help businesses stay ahead of attackers, ahead of the competition, and future-ready
for what’s next.

PRODUCTS

Cloud Security
XDR & SIEM
Threat Intelligence
Vulnerability Risk Management

Application Security
Orchestration & Automation
Managed Services

To learn more or start a free trial, visit: https://www.rapid7.com/try/insight/

CONTACT US

rapid7.com/contact

© RAPID7 2024 V4.0

The information provided in this paper is intended for informational purposes only and Rapid7 makes no
warranties, express or implied, regarding the suitability of the content for any specific purpose. The content
within this paper is based on data and findings available up to the date of its publication.

The information contained herein is provided “as is,” and readers are advised to use their own discretion when
applying the information to their specific situations. Furthermore, any third-party sources, tools, or software
mentioned in this report are included for informational purposes only. Rapid7 does not take responsibility for
the accuracy, functionality, or security of these external resources.

Rapid7 is not liable for any damages, losses, or consequences that may arise from the use of the information
provided within. This includes but is not limited to direct, indirect, incidental, or consequential damages related
to actions taken based on the content of this paper.

Any reproduction, distribution, or unauthorized use of this paper’s contents without explicit permission from
the authors and publishers is strictly prohibited.

https://www.rapid7.com/products/insightcloudsec/
https://www.rapid7.com/products/insightidr/
https://www.rapid7.com/products/threat-command/
https://www.rapid7.com/products/insightvm/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightconnect/
https://www.rapid7.com/services/managed-services/
https://www.rapid7.com/
https://www.rapid7.com/trial/insight/
https://www.rapid7.com/contact/

